
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: 0883-9514 (Print) 1087-6545 (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

Self-adaptive Multi-population Rao Algorithms for
Engineering Design Optimization

R. V. Rao & R. B. Pawar

To cite this article: R. V. Rao & R. B. Pawar (2020) Self-adaptive Multi-population Rao
Algorithms for Engineering Design Optimization, Applied Artificial Intelligence, 34:3, 187-250,
DOI: 10.1080/08839514.2020.1712789

To link to this article:  https://doi.org/10.1080/08839514.2020.1712789

Published online: 22 Jan 2020.

Submit your article to this journal 

Article views: 1383

View related articles 

View Crossmark data

Citing articles: 41 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2020.1712789
https://doi.org/10.1080/08839514.2020.1712789
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1712789
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2020.1712789
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1712789&domain=pdf&date_stamp=2020-01-22
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2020.1712789&domain=pdf&date_stamp=2020-01-22
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1712789#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2020.1712789#tabModule


Self-adaptive Multi-population Rao Algorithms for
Engineering Design Optimization
R. V. Rao and R. B. Pawar

Department of Mechanical Engineering, S. V. National Institute of Technology, Surat, India

ABSTRACT
The performance of various population-based advanced opti-
mization algorithms has been significantly improved by using
the multi-population search scheme. The multi-population
search process improves the diversity of solutions by dividing
the total population into a number of sub-populations groups
to search for the best solution in different areas of a search
space. This paper proposes improved optimization algorithms
based on self-adaptive multi-population for solving engineer-
ing design optimization problems. These proposed algorithms
are based on Rao algorithms which are recently proposed
simple and algorithm-specific parameter-less advanced optimi-
zation algorithms. In this work, Rao algorithms are upgraded
with the multi-population search process to enhance the diver-
sity of search. The number of sub-populations is changed
adaptively considering the strength of solutions to control
the exploration and exploitation of the search process. The
performance of proposed algorithms is investigated on 25
unconstrained benchmark functions and 14 complex con-
strained engineering design optimization problems. The results
obtained using proposed algorithms are compared with the
various advanced optimization algorithms. The comparison of
results shows the effectiveness of proposed algorithms for
solving engineering design optimization problems. The signifi-
cance of the proposed methods has proved using a well-
known statistical test known as “Friedman test.” Furthermore,
the convergence plots are illustrated to show the convergence
speed of the proposed algorithms.

Introduction

The optimization of engineering design problems is a big task for designers and
researchers due to the complexity of its mathematical modulation. These design
problems contain themixed type of design variables, i.e., continuous, discrete, and
integer variables as well as a number of design constraints which are required to be
satisfied for the proper functioning of engineering elements. The researchers are
making strenuous efforts for handling such complex requirements of optimization
of engineering design problems. The researchers have proposed various
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metaheuristics (advanced optimization algorithms) to address engineering design
problems and to improve their performance. Some of the well-known metaheur-
istic algorithms are: genetic algorithm (GA), particle swarm optimization (PSO),
ant colony optimization (ACO), differential evolution (DE), artificial bee colony
(ABC), harmony search algorithm (HSA), simulated annealing (SA), firefly algo-
rithm (FFA), biogeography-based optimization (BBO) gravitational search algo-
rithm (GSA), etc. In addition, various metaheuristics algorithms are proposed in
the last decade. Some of them are: spiral optimization, colliding body optimization
algorithm, teaching-learning-based optimization (TLBO), cuckoo search (CS)
algorithm, differential search algorithm, Jaya algorithm, gray wolf optimization
(GWO), galaxy-based search algorithm, crisscross optimization algorithm, cat
swarm optimization, ant lion optimization, etc.

The metaheuristic algorithms have their own advantages but most of the
optimization algorithms depend on their own algorithm-specific control para-
meters in addition to common controlling parameters such as the population
size and the number of iterations. GA depends on the mutation probability, the
selection operator, the crossover probability, etc.; ABC algorithm depends on
the number of onlooker bees, scout bees, employed bees, limit, etc.; PSO
algorithm depends on its inertia weight, social parameter, cognitive parameter,
etc.; HSA depends on number of improvisations, harmony memory considera-
tion rate, etc.; BBO depends on emigration rate, immigration rate, etc. Similarly,
other algorithms (except the TLBO algorithm and Jaya algorithm) have their
own algorithm-specific control parameters that are to be tuned. The values of
algorithm-specificparameters affect the fitness function value(s). The perfor-
mance of these optimization algorithms gets affected adversely due to improper
tuning of the algorithm-specific parameters. The precise tuning of the algorithm-
specific control parameters is a tedious process which increases the computa-
tional efforts. Due to these reasons, there is a need for the development of new
optimization algorithms that are simple to understand and independent of
algorithm-specific parameters. Keeping the above points in view, Rao (2020)
proposed three Rao algorithms which are simple, algorithm-specific parameter-
less and metaphor-less optimization algorithms.

The advanced optimization methods based on the multi-population search
process are used for enhancing the search diversity by breaking the total popula-
tion into a number of sub-population groups and assigning these groups through-
out the search space to detect the problem changes effectively. This basic idea is
implemented to keep the diversity of the search process by assigning different sub-
population groups to different areas of search space. Each population is subjected
to either diversifying or intensifying the search processes of the algorithm.
A merge and divide process is used for interaction between the sub-populations
whenever there is a change in the solution is observed (Rao and Saroj 2017). The
multi-population approaches have outperformed the existing fixed population
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size optimization methods for various problems and these are found effective
while dealing with different problems.

Li and Yang (2008) proposed a multi-swarm PSO algorithm and used for
solving dynamic optimization problems. Yang and Li (2010) proposed
a clustering PSO algorithm for locating and tracking multiple optima in dynamic
environments. Zhang and Ding (2011) presented a multi-swarm self-adaptive and
cooperative PSO based on four sub-swarm and used to solve complexmultimodal
benchmark problems. Rao and Patel (2013) proposed multiple teachers based
TLBO algorithm and used for optimization of heat exchangers. Xia, Chu, and
Geng (2014) proposed a fuzzy c-means multiswarm competitive PSO algorithm
and used to realize online operation optimization and control of the chemical
process. Turky and Abdullah (2014) proposed a multi-population HSA with
external archive for solving dynamic optimization problems. Jena, Thatoi, and
Parhi (2015) proposed a dynamically self-adaptive fuzzy PSO technique for smart
diagnosis of transverse crack. Gulcu and Kodaz (2015) presented a parallel multi-
swarm algorithm based on a comprehensive learning PSO method. Nseef et al.
(2016) proposed amulti-population ABC algorithm and used for solving dynamic
optimization problems. Wang, Li, and Yang (2017) proposed a self-adaptive DE
algorithm with improved mutation mode and used for solving benchmark opti-
mization problems. Rao and Saroj (2017) proposed a multi-population Jaya
algorithm and used to solve various unconstrained and constrained benchmark
optimization problems.

Zarchi and Vahidi (2018) presented a self-adaptive PSO algorithm to solve
the optimization problem of underground cables. Vafashoar and Meybodi
(2018) presented a multi-swarm PSO algorithm with adaptive connectivity
degree for the particles. Rizk-Allah (2018) optimized engineering design
problems using a hybrid sine cosine algorithm with multi-orthogonal search
strategy. Zhao et al. (2019) presented an adaptive multi-population non-
dominated sorting genetic algorithm and used to optimize multi-objective
benchmark problems. Chowdhury et al. (2019) proposed a modified ACO
algorithm based on adaptive large neighborhood search to solve a dynamic
traveling salesman problem. Mortazavi (2019) proposed a self-adaptive
hybrid optimization method which combined the affirmative features of
Integrated PSO and TLBO techniques with a fuzzy decision mechanism.

The characteristics of the multi-population optimization approaches are
useful because of the following reasons (Li et al. 2015):

(i) The overall diversity of the search process can be maintained by
allocating the entire population into groups because various sub-
populations can be situated in different regions of the problem search
space and are having the ability to search in various regions
simultaneously.
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(ii) Population-based optimization methods can be easily integrated into
other methods.

The number of sub-populations depends on the complexity of the problem.
Hence, it is very difficult to decide the number of sub-populations for the
effective execution of the algorithm. The incorrect number of sub-
populations may also lose the diversity of the search process. In order to
avoid these issues, the present work proposes self-adaptive multi-population
(SAMP) Rao algorithms to incorporate the advantages of multi-population
approach in basic Rao algorithms. The SAMP-Rao algorithms adaptively
change the number of subpopulations based on the change in the best fitness
value in each iteration in order to control the exploration and exploitation
rates of the search process.

The basic objectives of this work are:

(i) To propose SAMP-Rao algorithms that split the entire population
into the number of sub-populations to improve the diversity of
search and change the number of sub-populations adaptively based
on the best value of fitness function in each iteration to control the
exploration and the exploitation of the search process.

(ii) To investigate the performance of the proposed algorithms on dif-
ferent benchmark functions and complex engineering design optimi-
zation problems.

(iii) To illustrate the convergence speed of proposed algorithms using
convergence plots for problems considered.

The results obtained using the proposed algorithms are compared with various
advanced algorithms such as genetic algorithm (GA), particle swarm optimiza-
tion (PSO), artificial bee colony (ABC), cuckoo search (CS), simulated annealing
(SA), moth-flame optimization (MFO), gray wolf optimizer (GWO), ant lion
optimizer (ALO), water cycle algorithm (WCA), mine blast algorithm (MBA),
evaporation rate water cycle algorithm (ER-WCA), salp swarm algorithm (SSA),
whale optimization algorithm (WOA), multi-verse optimization (MVO), and
Henry gas solubility optimization (HGSO) algorithm. The computational results
of the optimization problems in the present work have revealed that SAMP-Rao
algorithms are effective for obtaining highly competitive results compared to the
other optimization algorithms reported.

The rest of the paper is structured as section 2 presents description of the
proposed SAMP-Rao algorithms, section 3 presents the analysis of computa-
tional results obtained using Rao algorithms and proposed SAMP-Rao algo-
rithms for the considered engineering design optimization problems and
their comparisons with the results of other optimization algorithms reported,
and finally, Section 4 concludes the outcomes of this study.
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SAMP-Rao Algorithms

The path of searching an optimal solution using Rao algorithms depends
on the best and worst candidate solutions within the entire population
and the random interactions between the candidate solutions. Let f is the
fitness function which is to be maximized (or minimized). At any itera-
tion w, assume that there are ‘n’ number of populations (i.e., candidate
solutions, u = 1,2, …, n) and ‘d’ number of design variables. Let the best
value of fitness function f (i.e., fbest) obtains with the best candidate
variables, i.e., best within the entire candidate solutions and the worst
value of f (i.e., fworst) obtains with the worst candidate, i.e., worst within
the entire population. If Xu,v,w is the value of the vth variable for the uth
candidate during the wth iteration, then this value is updated using any
one of the following three equations.

X0
u;v;w ¼ Xu;v;w þ r1;u;v;wðXbest;v;w � Xworst;v;wÞ; (1)

X0
u;v;w ¼ Xu;v;w þ r1;u;v;wðXbest;v;w � Xworst;v;wÞ

þ r2;u;v;wðjXu;v;w or XU;v;wj � jXU;v;w or Xu;v;wjÞ;
(2)

X0
u;v;w ¼ Xu;v;w þ r1;u;v;wðXbest;v;w � jXworst;v;wjÞ

þ r2;u;v;wðjXu;v;w or XU;v;wj � ðXU;v;w or Xu;v;wÞÞ;
(3)

where, Xbest,v,w is the value of the best candidate for the variable v and
Xworst,v,w is the value of the worst candidate for the variable v during the wth

iteration. X’u,v,w is the updated value of Xu,v,w and r1,u,v,w and r2,u,v,w are the
two random numbers for the uth candidate of vth variable during the wth

iteration in the range [0, 1].
In Equations (2) and (3), the term Xu,v,w or XU,v,w indicates that the uth

candidate solution is compared with any randomly picked Uth candidate
solution and the information is exchanged on the basis of their fitness
function values. If the fitness function value of an uth candidate solution is
better than the fitness function value of Uth candidate solution then the term
“Xu,v,w or XU,v,w” becomes Xu,v,w and the term “XU,v,w or Xu,v,w” becomes
XU,v,w. On the other hand, if the fitness function value of an Uth candidate
solution is better than the fitness function value of uth candidate solution
then the term “Xu,v,w or XU,v,w” becomes XU,v,w and the term “XU,v,w or
Xu,v,w” becomes Xu,v,w.

The searching process of global optimum is carried out using Equations
(1)–(3) in Rao-1 algorithm, Rao-2 algorithm, and Rao-3 algorithm, respec-
tively. Equations (1)–(3) can be expressed in a simplified form as,

xnew ¼ xold þ r1 xbest � xworstð Þ (4)

xnew ¼ xold þ r1 xbest � xworstð Þ þ r2 jxold or xrandomj � jxrandom or xoldjð Þ; (5)
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xnew ¼ xold þ r1 xbest � jxworstjð Þ þ r2 jxold or xrandomj � xrandom or xoldð Þð Þ (6)

Just like the TLBO algorithm (Rao, Savsani, and Vakharia 2011) and Jaya
algorithm (Rao 2016, 2019), these three Rao algorithms are also independent
of algorithm-specific parameters and thus the efforts of designers are reduced
to tune the algorithm-specific parameters for obtaining the best results. Also,
the proposed algorithms are comparatively simpler.

In SAMP-Rao algorithms, the following modifications are made to basic
Rao algorithms:

(i) The proposed SAMP-Rao algorithms use a number of sub-
populations by splitting the total population into the number of
groups based on the quality of the solutions. The use of the number
of sub-populations spread the solutions over the search space rather
than focusing on a particular region. Therefore, the proposed algo-
rithms are expected to reach an optimum solution.

(ii) SAMP-Rao algorithms change the number of sub-populations adap-
tively during the search process based on the quality of the fitness
value. It means that the number of sub-populations will be increased
or decreased. This feature supports the search process for searching
the optimum solution and for enhancing the diversification of the
search process. Furthermore, duplicate solutions are replaced by
newly generated solutions to maintain diversity and to enhance the
exploration procedure.

The flowchart of the proposed SAMP-Rao-1 algorithm is illustrated in Figure 1.
The flowchart of SAMP-Rao-2 and SAMP-Rao-3 algorithm is the same as the
SAMP-Rao-1 algorithm except an equation used to modify solutions. In the
search process of SAMP-Rao-1 algorithm, solutions modify using Equation (1),
whereas, in the case of SAMP-Rao-2 and SAMP-Rao-3 algorithm, solutions
modify using Equations (2) and (3) respectively.

The basic steps of SAMP-Rao algorithms are as follows:

Step 1: Initially set the number of populations (P), the number of design
variables (d), and termination criterion (for the present work, termina-
tion criterion is the maximum number of function evaluations
(maxFEs)).

Step 2: Generate the random initial candidate solutions within the search
space.

Step 3: Divide the entire population into ‘s’ number of groups based on
the quality of the solutions (initially s = 2 is considered).

Step 4: Use one of the Rao algorithms for modifying the solutions in each
sub-population group independently. Compare each modified solution
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with the corresponding old solution and accept if and only if it is better
than the old solution.

Step 5: Merge the entire sub-populations together. Check whether f
(best_before) is better than f(best_after).

Here, f(best_before) is the previous best solution of the entire population
and f(best_after) is the current best solution in the entire population. If
the value of f(best_after) is better than the value of f(best_before), s is
increased by 1 (s = s + 1) to increase the exploration feature of the search
process. Otherwise, s is decreased by 1 (s = s - 1) as the algorithm needs
to be more exploitive than explorative.

Step 6: Check the termination criterion. If the search process has reached the
maximum number of function evaluations, then terminate the loop and
report the best optimum solution. Otherwise, follow the following steps:

Figure 1. Flowchart of the SAMP Rao-1 algorithm.
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(i) For re-dividing the population, go to Step 3.
(ii) Replace the duplicate solutions with randomly generated solutions.

Now, the performance of proposed SAMP-Rao algorithms is tested on 25
unconstrained standard benchmark functions and 14 well-known engineering
design optimization problems taken from the literature. The next section pre-
sents the analysis of computational results obtained using proposed SAMP-Rao
algorithms and its comparison with the results of other algorithms.

Optimization Results and Discussion

The computational experiments are performed using the R2016b version of
MATLAB tool. A Laptop with 1.90-GHz Intel Core i3-4030U processor and
8GB RAM is used for computational experiments. The performance of the
proposed three algorithms is investigated on 25 unconstrained benchmark
problems having different characteristics such as separability, non-
separability, unimodality, multimodality, regularity, non-regularity, etc.
Furthermore, the performance of the proposed methods is also tested on
14 well-known constrained engineering design optimization problems.

Unconstrained Benchmark Problems

This section presents the analysis of the results of 25 unconstrained bench-
mark problems presented in Table 35 of Appendix A. The performance of the
proposed upgraded version of each Rao algorithm is compared with the
corresponding basic Rao algorithms (Rao 2020). The optimization results
of proposed algorithms obtained with 500,000 function evaluations over 30
independent runs for each benchmark function are presented in Table 1. The
results of Rao algorithms (Rao 2020) for the same benchmark problems are
compared with the proposed methods to check for performance
improvement.

In Table 1, the column named as “optimum” shows the global optimum
value of each benchmark function. From Table 1, it can be observed that the
statistical results of the SAMP-Rao-1 algorithm are better than Rao-1 algo-
rithms in all benchmark functions except F10 and F11 functions. Also, the
statistical results of SAMP-Rao-2 and SAMP-Rao-3 algorithms are better
than corresponding Rao-2 and Rao-3 algorithms, respectively. However, the
significance of the proposed methods has to be proved using some statistical
tests. Hence, a well-known statistical test known as “Friedman test” (Derrac
et al. 2011) is used to compare the performance of proposed methods. In this
test, initially, the ranking is given to the algorithms in each problem con-
sidering statistical results. Rank 1 is given to the algorithm which has
obtained the best results and then the ranking of all remaining algorithms
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Table 1. Statistical results of the proposed algorithms over 30 runs for 25 unconstrained
benchmark problems considered (500,000 function evaluations).
Function Optimum Rao-1* Rao-2* Rao-3* SAMP-Rao-1 SAMP-Rao-2 SAMP-Rao-3

F1 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 499976 499791 277522 499896 499760 264470

F2 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 499975 499851 276556 499893 499831 275114

F3 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 9805 7612 7325 4396 3701 5808

F4 -1 B -1 -1 -1 -1 -1 -1
W 0 -1 -1 -1 -1 -1
M -0.5667 -1 -1 -1 -1 -1
SD 0.5040 0 0 0 0 0
MFE 3010 11187 14025 52166 3110 6627

F5 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 77023 110544 143088 27660 41647 55044

F6 0 B 0 0 0 0 0 0
W 0 5.35E-23 1.32E-25 0 0 0
M 0 1.80E-24 7.87E-27 0 0 0
SD 0 9.76E-24 2.61E-26 0 0 0
MFE 385066 477753 488127 130487 156904 155109

F7 -50 B -50 -50 -50 -50 -50 -50
W -50 -50 -50 -50 -50 -50
M -50 -50 -50 -50 -50 -50
SD 0 0 0 0 0 0
MFE 17485 37209 34796 16721 32211 32934

F8 -210 B -210 -210 -210 -210 -210 -210
W -210 1171 -210 -210 -210 -210
M -210 -30.8587 -210 -210 -210 -210
SD 0 4.13E+02 0 0 0 0
MFE 48231 144156 142253 42937 149932 136764

F9 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 345615 499767 258451 283000 499707 256045

F10 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 301513 499849 144367 352081 263158 130269

F11 0 B 8.95E-26 1.86E-16 1.40E-14 5.64E-13 2.42E-16 2.12E-06
W 3.9866 22.191719 22.191719 4.04 0.8796 2.373459
M 0.6644 0.739724 0.739728 1.02 0.1163 0.388004
SD 1.51E+00 4.05E+00 4.05E+00 1.75 2.36E-01 4.55E-01

(Continued )

APPLIED ARTIFICIAL INTELLIGENCE 195



Table 1. (Continued).

Function Optimum Rao-1* Rao-2* Rao-3* SAMP-Rao-1 SAMP-Rao-2 SAMP-Rao-3

MFE 489811 478410 478420 492722 493267 481648
F12 0 B 0.666667 2.81E-30 0.666667 1.82E-30 1.81E-30 1.81E-30

W 0.666667 0.666667 0.667019 0.666667 0.666667 0.666667
M 0.666667 0.288889 0.666686 0.622222 0.222222 0.533333
SD 0 3.36E-01 7.39E-05 0.169139 0.319642 2.71E-01
MFE 75427 113638 159231 127503 302529 196018

F13 0.397887 B 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887
W 0.397931 0.397933 0.397888 0.397888 0.397907 0.397887
M 0.397892 0.397891 0.397887 0.397887 0.397888 0.397887
SD 1.05E-05 1.03E-05 1.44E-07 1.96E-07 4.03E-06 1.81E-08
MFE 102785 41263 80683 39681 28691 80535

F14 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 3129 4751 3435 2759 4377 3309

F15 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 2963 4272 3191 2535 3795 3061

F16 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 4725 12337 6821 4275 10753 2998

F17 0 B 0 0 0 0 0 0
W 0 0 0 0 0 0
M 0 0 0 0 0 0
SD 0 0 0 0 0 0
MFE 5583 4485 4312 2136 1889 1741

F18 -1.8013 B -1.801303 -1.801303 -1.801303 -1.801303 -1.801303 -1.801303
W -1.801303 -1.801303 -1.801303 -1.801303 -1.801303 -1.801303
M -1.801303 -1.801303 -1.801303 -1.801303 -1.801303 -1.801303
SD 0 0 0 0 0 0
MFE 3863 2694 2751 3632 2468 2361

F19 -4.6877 B -4.687658 -4.687658 -4.687658 -4.687658 -4.687658 -4.687658
W -4.537656 -3.116841 -3.495893 -4.645895 -4.495893 -4.361327
M -4.674306 -4.429948 -4.492183 -4.683482 -4.622998 -4.562120
SD 3.09E-02 3.60E-01 2.79E-01 1.27E-02 6.51E-02 7.95E-02
MFE 39710 67252 58401 69443 73844 35037

F20 3 B 3 3 3 3 3 3
W 3 84 3 3 3 3
M 3 5.7 3 3 3 3
SD 0 1.48E+01 0 0 0 0
MFE 180121 176933 353893 108635 151479 291569

F21 0 B 0 0 0 0 0 0
W 3.71E-09 0 0 5.95E-11 0 0
M 1.45E-10 0 0 2.00E-12 0 0
SD 6.78E-10 0 0 1.09E-11 0 0
MFE 82792 3139 4453 15931 2916 3245

F22 0 B 1.51E-14 7.99E-15 4.44E-15 1.51E-14 7.99E-15 4.44E-15
W 2.220970 1.51E-14 1.51E-14 1.340421 1.51E-14 7.99E-15
M 0.566540 1.04E-14 6.69E-15 0.114229 9.06E-15 5.86E-15
SD 7.41E-01 3.14E-15 2.38E-15 3.53E-01 2.49E-15 1.77E-15

(Continued )
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in ascending order is done. Finally, the average rank of each algorithm is
calculated to get final rank of each algorithm for the considered problems. In
this test, the χ2 distribution with k-1 degree of freedom is considered
(k denotes the number of algorithms considered in test). Friedman test
provides the overall performance of each algorithm over the other considered
algorithms for the problems considered.

Table 2 presents the average rank of the considered algorithms provided
by the Friedman test. The lower value of Friedman rank represents the better
performance of the algorithm compared to other algorithms considered.
From Table 2, it can be observed that the ranks of SAMP-Rao algorithms
are better than the corresponding basic Rao algorithms. Hence, the perfor-
mance of Rao algorithms is improved by incorporating SAMP approach in
these algorithms. The SAMP-Rao-3 algorithm has obtained the first rank
among the 6 algorithms with an average score of 2.36. As the p-value of the
Friedman test is very less than 0.05, it confirms the high significance of
proposed SAMP-Rao algorithms over Rao algorithms for the benchmark
problems considered. Figure 2 presents the Friedman rank of algorithms
considered on a column chart. From Figure 2, it can be observed that the

Table 1. (Continued).

Function Optimum Rao-1* Rao-2* Rao-3* SAMP-Rao-1 SAMP-Rao-2 SAMP-Rao-3

MFE 129392 417741 76352 198096 395861 86965
F23 0.998004 B 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004

W 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
M 0.998004 0.998004 0.998004 0.998004 0.998004 0.998004
SD 0 0 0 0 0 0
MFE 18839 95983 243748 17505 92195 221936

F24 -3.86278 B -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 -3.86278
W -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 -3.86278
M -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 -3.86278
SD 0 0 0 0 0 0
MFE 4459 3022 3271 3550 2378 2990

F25 0 B 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32 1.35E-32
W 0.010987 1.597462 0.141320 0.010987 0.054779 0.108359
M 0.001465 0.057915 0.016008 0.000732 0.004023 0.011303
SD 3.80E-03 2.91E-01 3.50E-02 2.79E-03 1.06E-02 2.26E-02
MFE 173661 115593 55637 178127 159795 94663

*The results of Rao algorithms are taken from Rao (2020).
B, best solution; W, worst solution; M, mean solution; SD, standard deviation; MFE, mean function
evaluations.

Table 2. Friedman rank test for 25 unconstrained benchmark problems.
Algorithm Rao-1 Rao-2 Rao-3 SAMP-Rao-1 SAMP-Rao-2 SAMP-Rao-3

Friedman ranks 4.24 4.72 4 2.92 2.76 2.36
χ2 31.926
p-value 0.00001 (<0.05)
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performance ranking of the algorithms for considered benchmark problems
is: SAMP-Rao-3, SAMP-Rao-2, SAMP-Rao-1, Rao-3, Rao-1 and at last Rao-2.

Furthermore, the computational complexity of the Rao and SAMP-Rao
algorithms is evaluated as shown in Table 3 using guidelines given in the
technical report of CEC 2017 (Awad et al. 2016). The computationally
expensive Function 18 of CEC 2017 benchmark suite is considered as given
in CEC 2017 guidelines to evaluate the computational complexity of the Rao
and SAMP-Rao algorithms. The computing time taken by the test program
given in CEC 2017 (T0) is found to be 0.24 s. T1 is the computing time taken
by CEC 2017 benchmark Function 18 for 200,000 function evaluations. T2 is

Figure 2. Friedman rank test for 25 unconstrained benchmark problems with 500,000 function
evaluations.

Table 3. Computational complexity of the Rao and SAMP-Rao algorithms.
Algorithm D T0 T1 T2 TD = (T2-T1)/T0 T30/T10 T50/T10
Rao-1 10 0.24 0.2272 4.808 19.087 2.6518 4.2643

30 0.24 0.5624 12.7096 50.613
50 0.24 1.1624 20.6962 81.391

Rao-2 10 0.24 0.2254 5.871 23.523 2.3893 3.8905
30 0.24 0.5624 14.0516 56.205
50 0.24 1.14 23.1044 91.518

Rao-3 10 0.24 0.2262 5.9202 23.725 2.4005 3.8371
30 0.24 0.5728 14.2412 56.952
50 0.24 1.146 22.9946 91.036

SAMP-Rao-1 10 0.24 0.241 6.6792 26.826 2.1922 3.3524
30 0.24 0.6 14.7138 58.808
50 0.24 1.1576 22.741 89.931

SAMP-Rao-2 10 0.24 0.2502 7.559 30.453 2.1385 3.3072
30 0.24 0.5862 16.2162 65.125
50 0.24 1.1814 25.353 100.715

SAMP-Rao-3 10 0.24 0.245 7.7316 31.194 2.0595 3.0507
30 0.24 0.5898 16.0086 64.245
50 0.24 1.1572 23.9968 95.165
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the total average computing time taken by the algorithm with 200,000
function evaluations over 5 runs. In Table 3, the values of T30/T10 reveal
the computational complexity of the algorithms when the dimension of
problem changes from 10D to 30D. Similarly, the values of T50/T10 reveal
the computational complexity of the algorithms when the dimension of
problem changes from 10D to 50D. From Table 3, it can be observed that
the complexity of the Rao-1, Rao-2, and Rao-3 algorithms is reduced by
17.33%, 10.5%, and 14.2% using SAMP-Rao-1, SAMP-Rao-2, and SAMP-Rao
-3 algorithms, respectively. Similarly, the complexity of the Rao-1, Rao-2, and
Rao-3 algorithms is reduced by 10%, 13.83%, and 13.81% using SAMP-Rao
-1, SAMP-Rao-2, and SAMP-Rao-3 algorithms, respectively. Hence, the
proposed SAMP-Rao algorithms have less computational complexity com-
pared to the Rao algorithms.

Engineering Design Optimization Problems

In this section, the performance of proposed algorithms is further tested on 14
well-known constrained engineering design problems described in theAppendix
B. The performance of the proposed algorithms is compared with the other
advanced optimization algorithms such as GA, PSO, ABC, CS, SA,MFO, GWO,
ALO, WCA, MBA, ER-WCA, SSA, WOA, MVO, HGSO, and Rao algorithms.
For each problem, the results are obtained by executing Rao algorithms and
proposed SAMP-Rao algorithms for 50 runs independently. The optimal
designs obtained for each problem using each Rao and SAMP-Rao algorithms
are tabulated separately and the statistical results of all problems except a spur
gear train design problem obtained using SAMP-Rao algorithms over 50 runs
are compared with the results obtained using Rao algorithms and the other
optimization algorithms. The precision of results up to six decimal points is
considered in all problems. A penalty approach is considered to handle con-
straints in this work. The penalty values are assigned based on fitness values and
sensitivity of constraints. In the search process of optimum solution, infeasible
solutions that violate the constraint(s) are converted to worse solutions by
assigning higher penalties to corresponding fitness values.

Figure 3. Schematic diagram of a belleville spring (Yildiz, Abderazek, and Mirjalili 2019).

APPLIED ARTIFICIAL INTELLIGENCE 199



Figure 3 shows the schematic diagram of a Belleville spring. This problem
is taken from Yildiz, Abderazek, and Mirjalili (2019) and was initially
proposed by Coello (2000). The objective of this problem is the minimization
of the weight of spring while satisfying seven non-linear constraints (given as
Problem 1 in Appendix B). This problem consists of four continuous type
design variables, namely the outer diameter of the spring (Do), the inner
diameter of the spring (Di), the spring thickness (t), and the spring height
(h). The limiting deflection of the spring δl depends on the ratio of height to
the thickness of the spring.

In this design problem, the population size and the maximum number of
function evaluations are considered as 10 and 15,000, respectively, in each Rao
and SAMP-Rao algorithm. Table 4 exhibits the optimal designs obtained for this
problem using Rao and SAMP-Rao algorithms which are nearly the same, but
SAMP-Rao algorithms have required less function evaluations than Rao algo-
rithms to get the optimum solution for this problem. Table 5 presents the
statistical results obtained using various optimization algorithms for the belle-
ville spring problem over 50 runs. As shown in Table 5, the best fitness values
obtained by Rao and SAMP-Rao algorithms are better than the other algorithms.
Also, the best mean fitness value obtained using SAMP-Rao-1 algorithm is better
than other algorithms. The standard deviation of results obtained by SAMP-
Rao-1 algorithm is better than the other optimization algorithms considered for
this problem. Figure 4 illustrates the speed of convergence of Rao and SAMP-
Rao algorithms to reach the optimal solution of this problem. For this problem,
the convergence speed of SAMP-Rao-3 algorithm is better and it has converged
first to the optimum solution at 145th generation.

The objective of this problem is the minimization of the weight of a car while
maintaining its safety rating score. This problem is taken from Yildiz,
Abderazek, and Mirjalili (2019) and was formulated by Gu et al. (2001) using
the European Enhanced Vehicle-safety Committees’ (EEVC) side-impact safety
regulations. The total weight of some parts of the car, in which the gauges are
defined as the design variables, is considered as an objective function (given as
Problem 2 in Appendix B). This problem consists of 11 mixed-type design
variables x1–x11. The variables x1–x7 are continuous variables related to the

Table 4. Optimal designs of a belleville spring.
Algorithm

Design variables Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

fmin 1.979674 1.979674 1.979674 1.979674 1.979674 1.979674
Do 12.01 12.01 12.01 12.01 12.01 12.01
Di 10.030473 10.030473 10.030473 10.030473 10.030473 10.030473
t 0.204143 0.204143 0.204143 0.204143 0.204143 0.204143
h 0.2 0.2 0.2 0.2 0.2 0.2
FEs 14,465 13,861 13,604 14,322 13,506 13,280
NP 10 10 10 10 10 10
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Table 5. Comparison of statistical results of a belleville spring problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

WAO* 2.036250 2.233924 2.966195 1.5003E-01 15000
SSA* 1.979677 2.084371 2.361004 1.0203E-02 15000
MBA* 1.979675 1.979893 1.981627 3.6576E-04 15000
WCA* 1.979692 2.001388 2.164943 3.3176E-02 15000
GWO* 1.989215 2.009633 2.046591 1.4209E-02 15000
ER-WCA* 1.979698 2.009130 2.139935 3.2146E-02 15000
ALO* 1.983576 2.104509 2.368557 9.4178E-02 15000
MFO* 1.981209 2.062404 2.276791 6.4371E-02 15000
PSO* 1.979695 2.013715 2.350003 9.0931E-02 15000
ABC* 2.033455 2.167697 2.402849 7.5329E-02 15000
Rao-1 1.979674 1.979677 1.979704 5.5757E-06 15000
Rao-2 1.979674 2.004610 2.849536 1.3266E-01 15000
Rao-3 1.979674 2.021976 2.849536 1.7846E-01 15000
SAMP Rao-1 1.979674 1.979676 1.979683 1.7264E-06 15000
SAMP Rao-2 1.979674 1.983529 2.167558 2.6560E-02 15000
SAMP Rao-3 1.979674 1.979706 1.980113 7.7338E-05 15000

* The results of these algorithms are taken from Yildiz, Abderazek, and Mirjalili (2019).

Figure 4. Convergence plot for the belleville spring problem.
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thicknesses of considered parts of the car, the variables x8 and x9 are discrete
variables related to the material choice (i.e., either mild steel or high strength
steel), and the variables x10 and x11 are continuous variables related to the noise
factors. There are ten non-linear design constraints that are to be satisfied while
reducing weight.

In this design problem, the population size and the maximum number of
function evaluations are considered as 10 and 29,750, respectively, in each
Rao and SAMP-Rao algorithm. Table 6 exhibits the optimal designs obtained
for this problem using Rao algorithms and SAMP-Rao algorithms. The
SAMP-Rao-2 algorithm obtained the best optimum design for this problem.
Also, SAMP-Rao algorithms have required less function evaluations than Rao

Table 6. Optimal designs of a car side impact problem.

Design variables

Algorithm

Rao-1 Rao-2 Rao-3
SAMP
Rao-1

SAMP
Rao-2

SAMP
Rao-3

fmin 22.842934 22.842962 22.842952 22.842778 22.842474 22.842889
x1 0.5 0.5 0.5 0.5 0.5 0.5
x2 1.115454 1.115108 1.114729 1.117111 1.116409 1.112456
x3 0.5 0.5 0.5 0.5 0.5 0.5
x4 1.303705 1.304288 1.304915 1.300910 1.301776 1.308680
x5 0.5 0.5 0.5 0.5 0.5 0.5
x6 1.5 1.499987 1.5 1.5 1.500000 1.5
x7 0.5 0.5 0.5 0.5 0.500325 0.5
x8 0.345 0.345 0.345 0.345 0.345 0.345
x9 0.345 0.345 0.345 0.192 0.192 0.345
x10 −19.725672 −19.795653 −19.899042 −19.429599 −19.561806 −20.414686
x11 −0.313595 −0.079566 −0.401448 −0.187136 0.026451 −0.294756
FEs 25,640 28,600 25,000 23,794 22,636 22,390
NP 40 40 40 40 40 40

Table 7. Comparison of statistical results of a car side impact problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

WAO* 23.042162 24.814486 27.360813 9.6570E-01 29750
SSA* 22.846514 23.253716 23.829530 3.0557E-01 29750
MBA* 22.843596 22.936421 23.488942 1.5258E-01 29750
WCA* 22.843036 22.975164 23.370933 1.9772E-01 29750
GWO* 22.852792 22.992226 23.347095 1.6277E-01 29750
ER-WCA* 22.843264 23.069925 24.455312 3.5021E-01 29750
ALO* 22.842980 23.108402 23.824366 2.9093E-01 29750
MFO* 22.842970 22.972834 23.687547 2.0794E-01 29750
PSO* 22.842984 23.613571 26.190640 7.5252E-01 29750
ABC* 23.175889 23.860680 25.010762 3.7642E-01 29750
Rao-1 22.842934 22.888091 23.233663 1.1932E-01 29750
Rao-2 22.842962 22.899998 23.510730 1.5420E-01 29750
Rao-3 22.842952 22.932165 23.358370 1.4679E-01 29750
SAMP Rao-1 22.842778 22.846850 23.049444 2.9249E-02 29750
SAMP Rao-2 22.842474 22.887000 23.808878 1.5257E-01 29750
SAMP Rao-3 22.842889 22.880904 23.246891 8.9250E-02 29750

* The results of these algorithms are taken from Yildiz, Abderazek, and Mirjalili (2019).
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algorithms to get an optimum solution for this problem. Table 7 presents the
statistical results obtained using various optimization algorithms for a car
side impact problem over 50 runs. As shown in Table 7, the best fitness value
obtained by SAMP-Rao-2 algorithm is better than the other algorithms. Also,
the best mean fitness value obtained using SAMP-Rao-1 algorithm is better
than the other algorithms. The standard deviation of results obtained by Rao-
1 algorithm is better than other algorithms. Figure 5 illustrates the speed of
convergence of Rao and SAMP-Rao algorithms to reach the optimal solution
of this problem. For this problem, the convergence speed of SAMP-Rao-1
algorithm is better and it has converged first to optimum solution at the
160th generation.

Figure 6 shows the schematic diagram of a coupling with a bolted rim. This
problem is taken from Yildiz, Abderazek, and Mirjalili (2019). The N number of
bolts placed at RB radius having diameter d transmit a torqueM by adhesion. The
objective of this problem is the minimization of the radius of coupling, the torque,
and the number of bolts simultaneously while satisfying eleven inequality design
constraints (given as Problem 3 in Appendix B). This problem is a multi-objective
problemwith weighing coefficients of individual objectives as β1, β2, and β3. There

Figure 5. Convergence plot for the car side impact problem.
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are four mixed-type design variables, such as the bolt diameter as d which is
a discrete variable, the number of bolts as N which is an integer variable, the
location of bolts from center of coupling as RB and the torque transmitted
asM which are continuous variables.

In this design problem, the population size and the maximum number of
function evaluations are considered as 20 and 5,000, respectively, in each Rao
and SAMP-Rao algorithm. Table 8 exhibits the optimal designs obtained for this
problem using Rao algorithms and SAMP-Rao algorithmswhich are the same, but
SAMP-Rao algorithms have required less function evaluations than Rao algo-
rithms to get the optimum solution for this problem. Table 9 presents the
statistical results obtained using various optimization algorithms for coupling
with a bolted rim problem over 50 runs. As shown in Table 9, the best fitness
value obtained by Rao and SAMP-Rao algorithm is better than the other algo-
rithms. Also, the best mean fitness value obtained using SAMP-Rao-1 algorithm is
better than the other algorithms. The standard deviation of results obtained by
Rao-3 algorithm is better than the other algorithms. Figure 7 illustrates the speed

Figure 6. Schematic diagram of a coupling with a bolted rim (Yildiz, Abderazek, and Mirjalili 2019).

Table 8. Optimal designs of a coupling with a bolted rim.

Design variables

Algorithm

Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

fmin 3.4 3.4 3.4 3.4 3.4 3.4
d 6 6 6 6 6 6
N 8 8 8 8 8 8
Rb 57.5 57.5 57.5 57.5 57.5 57.5
M 40 40 40 40 40 40
FEs 3,118 3,443 3,339 3,004 3,201 2,912
NP 20 20 20 20 20 20
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Table 9. Comparison of statistical results of a coupling with a bolted rim problem obtained over
50 runs.
Algorithm Best Mean Worst SD maxFEs

WAO* 3.480000 3.482102 3.552623 1.0670E-02 5000
SSA* 3.480000 3.480000 3.480000 1.6555E-08 5000
MBA* 3.480000 3.480000 3.480000 7.4154E-08 5000
WCA* 3.480000 3.480000 3.480000 1.1405E-09 5000
GWO* 3.480000 3.480188 3.480645 1.5178E-04 5000
ER-WCA* 3.480000 3.480000 3.480000 8.8909E-10 5000
ALO* 3.480000 3.480000 3.480000 9.5005E-09 5000
MFO* 3.480000 3.479999 3.480000 1.6943E-15 5000
PSO* 3.480000 3.539601 4.600000 2.1333E-01 5000
ABC* 3.480000 3.480001 3.480041 5.8746E-06 5000
Rao-1 3.400000 3.400000 3.400000 3.1402E-15 5000
Rao-2 3.400000 3.400000 3.400000 3.1402E-15 5000
Rao-3 3.400000 3.400000 3.400000 3.1402E-15 5000
SAMP Rao-1 3.400000 3.400000 3.400000 3.0073E-15 5000
SAMP Rao-2 3.400000 3.400000 3.400000 2.9723E-15 5000
SAMP Rao-3 3.400000 3.400000 3.400000 2.9641E-15 5000

* The results of these algorithms are taken from Yildiz, Abderazek, and Mirjalili (2019).

Figure 7. Convergence plot for the coupling with a bolted rim problem.
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of convergence of Rao and SAMP-Rao algorithms to reach the optimal solution of
this problem. For this problem, the convergence speed of SAMP-Rao-3 algorithm
is better and it has converged first to optimum solution at 10th generation.

Figure 8 shows the schematic diagram of a rolling element bearing. This
problem is taken from Yildiz, Abderazek, and Mirjalili (2019). The maximization
of the dynamic load capacity of the rolling element bearing is the objective of this
problem while satisfying nine non-linear inequality design constraints (given as
Problem 4 in Appendix B). This problem consists of 10 variables out of which five
are design variables, namely the pitch diameter of bearing as Dm, the diameter of
balls as Db, the number of balls as Z, the curvature coefficient of inner and outer
raceway as fi and fo, and five variables are constraint parameters such as KDmin,
KDmax, β, ε, and e. The number of balls Z is an integer variable and the remaining
nine variables are continuous. The previous researchers had converted this pro-
blem into a minimization problem by multiplying the objective function by −1.
Hence, in this paper also the objective function as presented by the previous
researchers is considered.

In the case of a rolling element bearing design problem, the population size and
the maximum number of function evaluations are considered as 20 and 25,000,
respectively, in each Rao and SAMP-Rao algorithm. Table 10 exhibits the optimal
designs obtained for this problem using Rao and SAMP-Rao algorithms. The
optimal designs obtained by Rao algorithms are nearly same as shown in Table 10,
but SAMP-Rao algorithms have required less function evaluations than Rao
algorithms to get the optimum solution for this problem. Table 11 shows statistical
results obtained using different optimization algorithms for a rolling element
bearing problem over 50 runs. The negative sign has occurred due to the

Figure 8. Schematic diagram of a rolling element bearing (Yildiz, Abderazek, and Mirjalili 2019).
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conversion of the maximization problem to minimization problem. The results of
other algorithms shown in Table 11 are found incorrect when the values of
optimal design variables given by the authors are substituted in the objective
function. The actual values of the fitness functions corresponding to the given best
design variables are shown in Table 11 as the corrected best values. This might
have happened due to consideration of incorrect formulations by the previous
researchers. Hence, the results of these considered algorithms are required to be
obtained again with correct formulations.

Table 11 shows statistical results obtained using different optimization
algorithms for a rolling element bearing problem over 50 runs. As shown
in Table 11, the best fitness values obtained by Rao and SAMP-Rao algo-
rithms are better than the other algorithms. Also, the best mean fitness value
obtained using the SAMP-Rao-1 algorithm is the same as Rao-1 algorithm
and better than the other algorithms. The standard deviation of results
obtained by SAMP-Rao-1 algorithm is better than the other optimization
algorithms considered for this problem. Figure 9 illustrates the speed of

Figure 9. Convergence plot for the rolling element bearing problem.
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convergence of Rao and SAMP-Rao algorithms to reach the optimal solution
of this problem. For this problem, the convergence speed of SAMP-Rao-2
algorithm is better and it has converged first to optimum solution at 64th
generation.

Figure 10 shows the schematic diagram of a speed reducer. This problem is
taken from Yildiz, Abderazek, andMirjalili (2019). The minimization of its total
weight is the objective of this design problem (given as Problem 5 in Appendix
B). There are seven design variables, namely, the face width as b, the module of
teeth as m, the number of teeth on pinion as Z, the length of shaft 1 between
bearings as l1, the length of shaft 2 between bearings as l2, shaft 1 diameter as d1,
and the shaft 2 diameter as d2. All are continuous-type design variables except
Z which is an integer design variable. This problem is having eleven constraints
which are related to the bending stress in the gear teeth, the surface stress, the
stresses in the two shafts, and transverse deflections of the two shafts due to
transmitted load.

In the case of a speed reducer design problem, the maximum number of
function evaluations and the number of populations are considered as 25,000
and 10, respectively, in each Rao and SAMP-Rao algorithm. Table 12 exhibits the
optimal designs obtained for this problem using Rao and SAMP-Rao algorithms.
The optimal designs obtained by Rao algorithms and SAMP-Rao are nearly the
same as shown in Table 12, but SAMP-Rao algorithms have required less function
evaluations than Rao algorithms to get the optimum solution for this problem.

Figure 10. Schematic diagram of a speed reducer (Yildiz, Abderazek, and Mirjalili 2019).
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Table 13 shows statistical results obtained using different optimization algorithms
for a speed reducer problem over 50 runs. As shown in Table 13, the best fitness
values obtained by Rao and SAMP-Rao algorithms are better than the other
algorithms. Also, the best mean fitness values obtained using SAMP-Rao algo-
rithms are the same as Rao-1 algorithm and better than the other algorithms. The
standard deviation of results obtained by SAMP-Rao-1 algorithm is better than
the other optimization algorithms considered for this problem. Figure 11 illus-
trates the speed of convergence of Rao and SAMP-Rao algorithms to reach the
optimal solution of this problem. For this problem, the convergence speed of
SAMP-Rao-3 algorithm is better and it has converged first to optimum solution at
67th generation.

Figure 12 shows the schematic diagram of a step-cone pulley. This pro-
blem is taken from Yildiz, Abderazek, and Mirjalili (2019). The minimization
of its weight is the objective of this design problem (given as Problem 6 in

Table 12. Optimal designs of a speed reducer.

Design
variables

Algorithm

Rao-1 Rao-2 Rao-3
SAMP
Rao-1

SAMP
Rao-2

SAMP
Rao-3

fmin 2,994.345132 2,994.345132 2,994.345132 2,994.345132 2,994.345132 2,994.345132
b 3.5 3.5 3.5 3.5 3.5 3.5
m 0.7 0.7 0.7 0.7 0.7 0.7
Z 17 17 17 17 17 17
l1 7.3 7.3 7.3 7.3 7.3 7.3
l2 7.715320 7.715320 7.715320 7.715320 7.715320 7.715320
d1 3.350215 3.350215 3.350215 3.350215 3.350215 3.350215
d2 5.286654 5.286654 5.286654 5.286654 5.286654 5.286654
FEs 24,714 24,461 24,183 22,511 23,380 23,385
NP 40 40 40 40 40 40

Table 13. Comparison of statistical results of a speed reducer problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

WAO* 2,996.604340 3,042.915000 3,233.598124 4.0888E+01 25,000
SSA* 2,996.021720 3,005.574377 3,015.662612 4.6387E+00 25,000
MBA* 2,994.471371 2,994.744437 2,994.484788 2.4195E-03 25,000
WCA* 2,994.471066 2,996.203773 3,016.578575 4.8705E+00 25,000
GWO* 2,995.704434 3,001.556162 3,009.944296 4.1218E+00 25,000
ER-WCA* 2,994.471066 2,996.744541 3,007.436552 4.3876E+00 25,000
ALO* 2,996.521745 3,005.644279 3,014.379001 4.7422E+00 25,000
MFO* 2,994.471066 2,994.471000 2,994.471000 7.3921E-10 25,000
PSO* 2,994.471069 3,070.655058 3,209.297397 5.8657E+01 25,000
ABC* 2,994.471067 2,994.471075 2,994.471115 9.2123E-06 25,000
Rao-1 2,994.345132 2,994.345132 2,994.345132 1.8443E-12 25,000
Rao-2 2,994.345132 2,995.916235 3,033.622701 7.7749E+00 25,000
Rao-3 2,994.345132 2,996.701786 3,033.622701 9.4226E+00 25,000
SAMP Rao-1 2,994.345132 2,994.345132 2,994.345132 1.9489E-13 25,000
SAMP Rao-2 2,994.345132 2,994.345132 2,994.345132 7.6429E-12 25,000
SAMP Rao-3 2,994.345132 2,994.345132 2,994.345132 3.2959E-12 25,000

* The results of these algorithms are taken from Yildiz, Abderazek, and Mirjalili (2019).
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Appendix B). There are five design variables with step diameters as d1, d2, d3,
and d4, respectively, and the pulley width w. This problem is having eleven
design constraints in which three are equality constraints and eight are
inequality constraints. The power transmitted by this pulley is to be at least
0.75 HP with 350 rpm input speed, and output speeds at each step are 750,
450, 250, and 150 rpm, respectively.

In the case of a step-cone pulley design problem, the maximum number of
function evaluations and the number of populations are considered as 15,000
and 10, respectively, in each Rao and SAMP-Rao algorithm. Table 14 exhibits
the optimal designs obtained for this problem using Rao and SAMP-Rao
algorithms. The optimal designs obtained by Rao and SAMP-Rao algorithms
are exactly the same as shown in Table 14. Table 15 shows statistical results
obtained using different optimization algorithms for a step-cone pulley pro-
blem over 50 runs. As shown in Table 15, the best fitness values obtained by
Rao and SAMP-Rao algorithms are the same as SSA and MFO algorithms, and
better than other algorithms. Also, the best mean fitness value obtained using
the SAMP-Rao-1 algorithm is better than the other algorithms. The standard

Figure 11. Convergence plot for the speed reducer problem.
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deviation of results obtained by SAMP-Rao-1 algorithm is better than the
other optimization algorithms considered for this problem. Figure 13 illus-
trates the speed of convergence of Rao and SAMP-Rao algorithms to reach the
optimal solution of this problem. For this problem, the convergence speed of
SAMP-Rao-2 algorithm is better and it has converged first to optimum solu-
tion at 30th generation.

Figure 14 shows the schematic diagram of a welded beam. This problem is
taken from Hashim et al. (2019). The objective of this design problem is the
minimization of fabrication cost (given as Problem 7 in Appendix B). There
are four design variables, i.e., the thickness of weld as h(x1), the length of an

Figure 12. Schematic diagram of a step-cone pulley (Yildiz, Abderazek, and Mirjalili 2019).

Table 14. Optimal designs of a step-cone pulley.

Design variables

Algorithm

Rao-1 Rao-2 Rao-3
SAMP
Rao-1

SAMP
Rao-2

SAMP
Rao-3

fmin 16.634504 16.634504 16.634504 16.634504 16.634504 16.634504
d1 40 40 40 40 40 40
d2 54.764301 54.764301 54.764301 54.764301 54.764301 54.764301
d3 73.013177 73.013177 73.013177 73.013177 73.013177 73.013177
d4 88.428420 88.428420 88.428420 88.428420 88.428420 88.428420
w 85.986243 85.986243 85.986243 85.986243 85.986243 85.986243
FEs 8589 6903 6312 9471 7974 8745
NP 10 10 10 10 10 10
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Table 15. Comparison of statistical results of a step-cone pulley problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

WAO* 16.634521 20.938294 24.848825 3.3498E+00 15000
SSA* 16.634504 17.286354 19.045457 1.8164E-01 15000
MBA* 16.634507 16.702535 18.323714 2.6279E-01 15000
WCA* 16.634508 17.530376 18.833029 9.2296E-01 15000
GWO* 16.647961 18.128588 19.015492 9.3755E-01 15000
ER-WCA* 16.634509 17.647333 18.832978 8.3766E-01 15000
ALO* 16.634508 16.789416 18.015810 3.6058E-01 15000
MFO* 16.634504 17.839171 24.777860 1.4201E+00 15000
PSO* 16.634521 20.938294 24.848825 3.3498E+00 15000
ABC* 16.648275 16.791388 17.468562 1.8164E-01 15000
Rao-1 16.634504 17.058070 19.354135 7.0999E-01 15000
Rao-2 16.634504 17.532656 19.379791 1.1492E+00 15000
Rao-3 16.634504 17.247839 19.387243 9.0818E-01 15000
SAMP Rao-1 16.634504 16.696366 17.115707 1.1316E-01 15000
SAMP Rao-2 16.634504 17.449175 19.240789 9.3855E-01 15000
SAMP Rao-3 16.634504 17.115218 19.240789 9.1497E-01 15000

* The results of these algorithms are taken from Yildiz, Abderazek, and Mirjalili (2019).

Figure 13. Convergence plot for the step-cone pulley problem.
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attached part of the bar as l(x2), the height of the bar as t(x3) and the
thickness of the bar as b(x4). This design problem is having seven constraint
equations which are related to the bending stress in the beam (σ), the end
deflection of the beam (δ), the shear stress (τ), the bucking load on the beam
(Pc), and the side constraints.

In the welded beam problem, the maximum number of function evaluations
and the number of populations are considered as 5,000 and 10, respectively, in each
Rao and SAMP-Rao algorithm. In this problem, the optimum designs obtained by
Rao and SAMP-Rao algorithms are nearly equal as shown in Table 17, but SAMP-
Rao algorithms have required less function evaluations than Rao algorithms to get
the optimumsolution for this problem. FromTable 16, the solution given byMFO,
i.e., 1.72452 is nearest to the solution given by Rao and SAMP-Rao algorithms for
this problem. But the solution given by MFO is an infeasible solution due to
violation of two constraints. So, the optimal solution given by Rao and SAMP-Rao
algorithms for this problem is superior to GWO, ALO, MVO, MFO, WOA, and
HGSO algorithms.

Table 18 shows statistical results obtained using Rao and SAMP-Rao algo-
rithms for this problem over 50 runs. As shown in Table 18, the best and best
mean fitness values obtained by Rao and SAMP-Rao algorithms are the same,
but the standard deviation of results obtained by the SAMP-Rao-1 algorithm is
better than the other algorithms. Figure 15 illustrates the speed of convergence
of Rao and SAMP-Rao algorithms to reach the optimal solution of this problem.
For this problem, the convergence speed of the SAMP-Rao-2 algorithm is better
and it has converged first to optimum solution at 170th generation.

Figure 16 shows the schematic diagram of an I-beam. This problem is
taken from Mirjalili (2015a). The objective of this design problem is the
minimization of its vertical deflection (given as Problem 8 in Appendix B).
There are four design variables as cross-sectional dimensions of I-beam, i.e.,
the overall width as b (x1), the overall height as h (x2), the thickness of the

Figure 14. Schematic diagram of a welded beam.
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Table 17. Optimal designs of a welded beam.

Design variables

Algorithm

Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

fmin 1.724852 1.724852 1.724852 1.724852 1.724852 1.724852
h 0.205730 0.205730 0.205730 0.205730 0.205730 0.205730
l 3.470487 3.470487 3.470488 3.470489 3.470489 3.470489
t 9.036624 9.036624 9.036624 9.036624 9.036624 9.036624
b 0.205730 0.205730 0.205730 0.205730 0.205730 0.205730
FEs 4790 4768 4831 4638 4626 4714
NP 10 10 10 10 10 10

Table 18. Statistical results of a welded beam problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

Rao-1 1.724852 1.724852 1.724852 1.1387E-08 5000
Rao-2 1.724852 1.724852 1.724852 1.0219E-08 5000
Rao-3 1.724852 1.724852 1.724852 5.1434E-08 5000
SAMP Rao-1 1.724852 1.724852 1.724852 1.0017E-08 5000
SAMP Rao-2 1.724852 1.724852 1.724852 3.4096E-08 5000
SAMP Rao-3 1.724852 1.724852 1.724852 5.2798E-08 5000

Figure 15. Convergence plot for the welded beam problem.

APPLIED ARTIFICIAL INTELLIGENCE 217



web as tw (x3) and the thickness of flange as th (x4). The constraint equation
in this problem is related to the cross-sectional area of an I-beam.

In the I-beam problem, the maximum number of function evaluations and
the number of populations are considered as 5000 and 10, respectively, in each
Rao and SAMP-Rao algorithm. In this problem, the optimum designs obtained
by Rao and SAMP-Rao algorithms are the same as shown in Table 19, but
SAMP-Rao algorithms have required less function evaluations than Rao algo-
rithms to get the optimum solution for this problem. From Table 16, the optimal
solution given by Rao and SAMP-Rao algorithms is the same as the solution
given by MFO algorithm and superior to CS algorithm for an I-beam problem.
Table 20 shows statistical results obtained using Rao and SAMP-Rao algorithms
for this problem over 50 runs. As shown in Table 20, the best mean fitness values
and the standard deviation of results obtained by SAMP-Rao algorithms are
better than the Rao algorithms. Figure 17 illustrates the speed of convergence of
Rao and SAMP-Rao algorithms to reach the optimal solution of this problem.

Figure 16. Schematic diagram of an I-beam.

Table 19. Optimal designs of an I-beam.

Design variables

Algorithm

Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

fmin 0.0066259 0.0066259 0.0066259 0.0066259 0.0066259 0.0066259
b 50 50 50 50 50 50
h 80 80 80 80 80 80
tw 1.764705 1.764706 1.764706 1.764706 1.764706 1.764706
th 5 5 5 5 5 5
FEs 1,419 1,446 2,237 1,350 1,300 1,203
NP 10 10 10 20 20 20

Table 20. Statistical results of an I-beam problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

Rao-1 0.0066259 0.0066409 0.0068503 5.6925E-05 5000
Rao-2 0.0066259 0.0066634 0.0068503 8.5049E-05 5000
Rao-3 0.0066259 0.0066409 0.0068503 5.6925E-05 5000
SAMP Rao-1 0.0066259 0.0066259 0.0066259 1.7523E-18 5000
SAMP Rao-2 0.0066259 0.0066259 0.0066259 1.7523E-18 5000
SAMP Rao-3 0.0066259 0.0066259 0.0066259 1.7523E-18 5000
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For this problem, the convergence speed of the SAMP-Rao-3 algorithm is better
and it has converged first to optimum solution at 23rd generation.

Figure 18 shows the schematic diagram of a cantilever beam. This problem
is taken from Mirjalili and Mirjalili (2016). The objective of this design

Figure 17. Convergence plot for the I-beam problem.

Figure 18. Schematic diagram of a cantilever beam.
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problem is the minimization of its weight (given as Problem 9 in Appendix
B). This cantilever beam is having five elements which are hollow and square
in cross-section. The thickness of the hollow cross-section of all five elements
is constant. Also, a vertical load is applied at the free end of the beam and the
other end is rigidly supported. The side length of the square cross-section of
each element is a design parameter. So this problem has five design variables.
The constraint equation in this problem is related to the vertical displace-
ment of the beam.

In the cantilever beam problem, the maximum number of function evalua-
tions and the number of populations are considered as 10000 and 10, respec-
tively, in each Rao and SAMP-Rao algorithm. In this problem, the optimum
designs obtained by Rao and SAMP-Rao algorithms are nearly the same as
shown in Table 21, but SAMP-Rao algorithms have required less function
evaluations than Rao algorithms to get the optimum solution for this problem.
As shown in Table 16, the optimal solutions given by SAMP-Rao algorithms for
a cantilever beam design problem are superior to CS, MFO, and MVO algo-
rithms and competitive with ALO algorithm. Table 22 shows statistical results
obtained using Rao and SAMP-Rao algorithms for this problem over 50 runs.
As shown in Table 22, the best mean fitness values and the standard deviation
of results obtained by the SAMP-Rao-1 algorithm are better than the other
algorithms. Figure 19 illustrates the speed of convergence of Rao and SAMP-
Rao algorithms to reach the optimal solution of this problem. For this problem,
the convergence speed of the SAMP-Rao-3 algorithm is better and it has
converged first to optimum solution at the 48th generation.

Table 21. Optimal designs of a cantilever beam.

Design variables

Algorithm

Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

fmin 1.339958 1.339957 1.339957 1.339957 1.339957 1.339957
x1 6.010575 6.012820 6.017600 6.019652 6.015386 6.017337
x2 5.310288 5.309512 5.308477 5.307321 5.307974 5.311291
x3 4.496193 4.496385 4.492312 4.492792 4.495085 4.494742
x4 3.504149 3.503597 3.502903 3.501437 3.499924 3.499465
x5 2.152484 2.151360 2.152373 2.152471 2.155307 2.150834
FEs 8558 8617 8837 8420 8549 8605
NP 10 10 10 10 10 10

Table 22. Statistical results of a cantilever beam problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

Rao-1 1.339958 1.339968 1.339984 6.6086E-06 10000
Rao-2 1.339957 1.339966 1.339994 8.6796E-06 10000
Rao-3 1.339957 1.339966 1.339995 8.1907E-06 10000
SAMP Rao-1 1.339957 1.339965 1.339981 5.8948E-06 10000
SAMP Rao-2 1.339957 1.339966 1.339989 6.7825E-06 10000
SAMP Rao-3 1.339957 1.339966 1.339989 7.7507E-06 10000
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Figure 19. Convergence plot for the cantilever beam problem.

Figure 20. Schematic diagram of a tension/compression spring.

Table 23. Optimal designs of a tension/compression spring.

Design variables

Algorithm

Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

fmin 0.012666 0.012669 0.012672 0.012666 0.012667 0.012669
d 0.051654 0.051217 0.051445 0.051654 0.052020 0.051290
D 0.355859 0.345455 0.350813 0.355859 0.364719 0.347177
N 11.340849 11.981684 11.648891 11.340849 10.835314 11.871772
FEs 6,793 6,429 6,004 6,078 6,287 5,886
NP 10 10 10 10 10 10
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Figure 20 shows the schematic diagram of a tension/compression spring. This
problem is taken from Hashim et al. (2019). The objective of this design problem
is the minimization of its weight (given as Problem 10 in Appendix B). As shown
in Figure 20, this problem is having three design variables, namely, the wire
diameter as d (x1), the mean coil diameter as D (x2) and the number of active
coils as N (x3). This problem is having four constraints which are related to the
shear stress, the minimum deflection, the surge frequency, and limits on the
outside diameter and on the design variables.

In the tension/compression spring problem, the maximum number of func-
tion evaluations and the number of populations are considered as 10,000 and 10,

Table 24. Statistical results of a tension/compression spring problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

Rao-1 0.012666 0.012712 0.012846 3.6195E-05 10,000
Rao-2 0.012669 0.013232 0.030455 2.5886E-03 10,000
Rao-3 0.012672 0.013086 0.017773 1.2062E-03 10,000
SAMP Rao-1 0.012666 0.012709 0.012818 3.5852E-05 10,000
SAMP Rao-2 0.012667 0.013246 0.017773 1.5264E-03 10,000
SAMP Rao-3 0.012669 0.013471 0.017773 1.7625E-03 10,000

Figure 21. Convergence plot for the tension/compression spring problem.

222 R. V. RAO AND R. B. PAWAR



respectively, in each Rao and SAMP-Rao algorithm. In this problem, the opti-
mum designs obtained by Rao-1 and SAMP-Rao-1 algorithms are the same and
better than other the algorithms as shown in Table 23, but the SAMP-Rao-1
algorithm has required less function evaluations than Rao-1 algorithm to get the
optimum solution for this problem. As shown in Table 16, the solution given by
SAMP-Rao-1 is the same as the solution given by the GWO algorithm. Also, the
solution given by the HGSO algorithm for this problem, i.e., 0.01265 is an
infeasible solution due to violation of one constraint. The optimal solution
given by the SAMP-Rao-1 algorithm for this problem is better than the WOA
algorithm. Table 24 shows statistical results obtained using Rao and SAMP-Rao
algorithms for this problem over 50 runs. As shown in Table 24, the best mean
fitness values and the standard deviation of results obtained by the SAMP-Rao-1
algorithm are better than the other algorithms. Figure 21 illustrates the speed of
convergence of Rao and SAMP-Rao algorithms to reach the optimal solution of
this problem. For this problem, the convergence speed of the SAMP-Rao-2
algorithm is better and it has converged first to optimum solution at the 40th
generation.

Figure 22 shows the schematic diagram of a pressure vessel. This problem
is taken from Mirjalili and Mirjalili (2016). The objective of this design
problem is the minimization of the total cost (given as Problem 11 in
Appendix B). This total cost comprises the cost of the material, welding,
and forming. As shown in Figure 22, this problem is having four design
variables, namely, the thickness of the shell as Ts (x1), the thickness of the

Table 25. Optimal designs of a pressure vessel.

Design
variables

Algorithm

Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

fmin 6059.714334 6059.714334 6059.714334 6059.714334 6059.714334 6059.714334
Ts 0.8125 0.8125 0.8125 0.8125 0.8125 0.8125
Th 0.4375 0.4375 0.4375 0.4375 0.4375 0.4375
R 42.098446 42.098446 42.098446 42.0984456 42.0984456 42.0984456
L 176.636596 176.636596 176.636596 176.636596 176.636596 176.636596
FEs 6,855 8,691 8,779 6,816 8,364 8,204
NP 20 20 20 20 20 20

Figure 22. Schematic diagram of a pressure vessel.
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head as Th (x2), the inner radius of the shell as R(x3), and the length of the
cylindrical section of the vessel without considering the head as L(x4). The
first two design variables, i.e., Ts and Th must be integer multiples of 0.0625
in. due to the available thickness of rolled steel plates. Remaining two
variables, i.e., R and L are continuous. This problem is having four design
constraints.

In the pressure vessel problem, the maximum number of function evalua-
tions and the number of populations are considered as 10,000 and 20,

Table 26. Statistical results of a pressure vessel problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

Rao-1 6059.714334 6069.230694 6093.903548 10.451664 10000
Rao-2 6059.714334 6062.055668 6090.526202 7.171409 10000
Rao-3 6059.714334 6061.883052 6090.526202 7.810982 10000
SAMP Rao-1 6059.714334 6068.004283 6093.713518 10.088323 10000
SAMP Rao-2 6059.714334 6061.786654 6370.779827 44.594750 10000
SAMP Rao-3 6059.714334 6061.821818 6370.779713 44.546246 10000

Figure 23. Convergence plot for the pressure vessel problem.
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respectively, in each Rao and SAMP-Rao algorithm. In this problem, the
optimum designs obtained by Rao and SAMP-Rao algorithms are the same as
shown in Table 25, but SAMP-Rao algorithms have required less function
evaluations than Rao algorithms to get the optimum solution for this pro-
blem. In Table 16, the solution given by GWO algorithm for pressure vessel
problem, i.e., 6,051.5639 is an infeasible solution because variable Th (x2) is
not an integer multiple of 0.0625 in. (Mirjalili, Mirjalili, and Lewis 2014). As
shown in Table 16, the optimal solution given by SAMP-Rao algorithms for
this problem is nearest to the solutions given by CS and MFO algorithms,
and superior to MVO and WOA algorithms. Table 26 shows statistical results
obtained using Rao and SAMP-Rao algorithms for this problem over 50 runs.
As shown in Table 26, the standard deviation of results obtained by Rao-2
algorithm is better than the other algorithms, but the best mean fitness value
obtained by the SAMP-Rao-2 algorithm is better than the other algorithms.
Figure 23 illustrates the speed of convergence of Rao and SAMP-Rao algo-
rithms to reach the optimal solution of this problem. For this problem, the
convergence speed of the SAMP-Rao-1 algorithm is better and it has con-
verged first to optimum solution at the 120th generation.

Figure 24 shows the schematic diagram of a gear train. This problem is taken
from Mirjalili and Mirjalili (2016). The objective of this design problem is the
minimization of the gear ratio (given as Problem 12 in Appendix B) . As shown
in Figure 24, this problem is having four design variables as the number of teeth
on four gears of a gear train, i.e., nA (x1), nB (x2), nC (x3), and nD (x4). All these

Table 27. Optimal designs of a gear train.

Design variables

Algorithm

Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

fmin 2.7009E-12 2.7009E-12 2.7009E-12 2.7009E-12 2.7009E-12 2.7009E-12
nA 49 43 49 43 43 49
nB 16 16 19 19 19 16
nC 19 19 16 16 16 19
nD 43 49 43 49 49 43
FEs 108 235 108 210 279 270
NP 10 10 10 10 10 10

Figure 24. Schematic diagram of a gear train.
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four design variables must be integer variables. In addition to this, the problem is
having a design constraint.

In the gear train problem, the maximum number of function evaluations and
the number of populations are considered as 500 and 10, respectively, in each Rao
and SAMP-Rao algorithm. In this problem, the values of design variables x2 and x3
as well as x1 and x4 are interchangeable due to its mathematical formulations. So
that there are different combinations of design variables for the same value of
optimal gear ratio. As shown in Table 27, even if the Rao and SAMP-Rao algo-
rithms got different sets of optimal design variables, but their corresponding

Table 28. Statistical results of a gear train problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

Rao-1 2.7009E-12 9.6288E-08 1.2045E-06 2.6504E-07 500
Rao-2 2.7009E-12 5.7864E-08 8.9490E-07 1.6169E-07 500
Rao-3 2.7009E-12 1.2022E-07 8.9490E-07 2.5475E-07 500
SAMP Rao-1 2.7009E-12 1.9898E-08 1.5244E-07 3.0089E-08 500
SAMP Rao-2 2.7009E-12 2.8413E-08 5.0415E-07 7.4334E-08 500
SAMP Rao-3 2.7009E-12 1.6216E-08 7.8022E-08 1.7207E-08 500

Figure 25. Convergence plot for the gear train problem.
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optimal values of fitness function, i.e., gear ratios are equal, i.e., 2.7009e-12. As
shown in Table 16, the optimal fitness value given by SAMP-Rao algorithms is the
same as other algorithms. Even though SAMP-Rao algorithms have requiredmore
function evaluations than Rao algorithms to get the optimum solution for this
problem, the bestmean fitness value and the standard deviation of results obtained
by SAMP-Rao algorithms are better than the Rao algorithms as shown in Table 28.
Figure 25 illustrates the speed of convergence of Rao and SAMP-Rao algorithms to
reach the optimal solution of this problem. For this problem, the convergence
speedof the SAMP-Rao-2 algorithm is better and it has converged first to optimum
solution at the third generation.

Figure 26. Schematic diagram of a 3-bar truss.

Table 29. Optimal designs of a 3-bar truss.

Design variables

Algorithm

Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

fmin 263.895841 263.895845 263.895843 263.895837 263.895842 263.895826
A1 0.788686 0.788673 0.788746 0.788688 0.788603 0.788587
A2 0.408217 0.408253 0.408047 0.408212 0.408453 0.408498
FEs 7,257 7,342 7,514 7,244 7,177 7,470
NP 10 20 20 10 10 10

Table 30. Statistical results of a 3-bar truss problem obtained over 50 runs.
Algorithm Best Mean Worst SD maxFEs

Rao-1 263.895841 263.896207 263.897166 3.7109E-04 10,000
Rao-2 263.895846 263.897469 263.899734 1.0976E-03 10,000
Rao-3 263.895843 263.897243 263.899650 1.0390E-03 10,000
SAMP Rao-1 263.895837 263.896209 263.897572 3.3987E-04 10,000
SAMP Rao-2 263.895842 263.896207 263.897545 3.8663E-04 10,000
SAMP Rao-3 263.895826 263.896340 263.900474 7.8503E-04 10,000
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The objective of a 3-bar truss design problem is the minimization of its
total weight (given as Problem 13 in Appendix B). This problem is taken
from Mirjalili and Mirjalili (2016). As shown in Figure 26, this problem is
having two design variables, i.e., the areas of bar 1 and 3 as A1 (x1) and the
area of bar 2 as A2 (x2). This problem is having three design constraints
related to stress in each of the truss members.

In the 3-bar truss problem, the maximum number of function evaluations
and the number of populations are considered as 10,000 and 10, respectively, in
each Rao and SAMP-Rao algorithm. As shown in Table 16, the optimal fitness
value given by the SAMP-Rao-3 algorithm is better than other algorithms. In
this problem, the optimumdesigns obtained by SAMP-Rao algorithms are better
than corresponding Rao algorithms as shown in Table 29. Also, SAMP-Rao
algorithms have required less function evaluations than Rao algorithms to get an
optimum solution for this problem. As shown in Table 30, the best mean fitness
value obtained by the SAMP-Rao-2 algorithm is better than other algorithms
and the standard deviation of results obtained by the SAMP-Rao-1 algorithm is
better than the other algorithms. Figure 27 illustrates the speed of convergence

Figure 27. Convergence plot for the 3-bar truss problem.
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of Rao and SAMP-Rao algorithms to reach the optimal solution of this problem.
For this problem, the convergence speed of the SAMP-Rao-3 algorithm is better
and it has converged first to optimum solution at the 263rd generation.

Figure 28 shows the schematic diagram of a single-stage spur gear train. The
objective of this design problem is the minimization of the weight of a spur gear
train (given as Problem 14 in Appendix B). This design problem is taken from
Savsani, Rao, and Vakharia (2010) and was formulated initially by Yokota,
Taguchi, and Gen (1998). This problem consists of five mixed-type design vari-
ables such as the face width as b, the pinion shaft diameter as d1, the gear shaft
diameter as d2, the number of teeth on pinion as Z1 and the module asmwith five
non-linear constraints. Among these five design variables, three are continuous
types of design variables such as b, d1 and d2, an integer type variable as Z1, and
a discrete-type variable as m. There are two cases for the ranges of the design
variables as shown in Appendix B. Case 1 was given by Yokota, Taguchi, and Gen
(1998) which had considered compact search space, and case 2 was given by
Savsani, Rao, and Vakharia (2010) which had considered an expanded search
space.

In the case of a spur gear train design problem, the optimal designs are
obtained by considering two cases of search space as shown in the Appendix
B. In both the cases, the population size and the maximum number of function

Figure 28. Schematic diagram of a spur gear train.
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evaluations are considered as 10 and 1,000, respectively, in each Rao and SAMP-
Rao algorithm. Table 31 exhibits the optimal designs obtained for compact
search space, i.e., case 1 of this problem. The optimal designs obtained by
SAMP-Rao algorithms and Rao-2 are the same as shown in Table 16. Also,
SAMP-Rao algorithms have required less function evaluations than correspond-
ing Rao algorithms to get the optimum solution for this problem. The optimal
designs obtained using SA, PSO, and GWO are infeasible due to violation of its
design constraint(s). So the optimal designs obtained in case 1 of this problem
using SAMP-Rao algorithms are superior to the optimal designs obtained using
GA, SA, PSO, GWO, and Rao algorithms. Also, the computational time taken by
SAMP-Rao algorithms is very less than SA and PSO algorithms, and there is very
small difference between the time taken by Rao and SAMP-Rao algorithms for
this problem. Figure 29 illustrates the speed of convergence of Rao and SAMP-
Rao algorithms to reach the optimal solution for case 1 of this problem. For this
problem, the convergence speed of the SAMP-Rao-1 algorithm is better and it
has converged first to optimum solution at the 26th generation.

In case 2 of a spur gear train design problem, the optimal designs obtained
using SAMP-Rao algorithms are the same as shown in Table 32. The optimal
design obtained using GWO is infeasible due to the violation of its design
constraint(s). So the optimal designs obtained in case 2 of this problem using

Figure 29. Convergence plot for the spur gear train problem with compact search space.
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SAMP-Rao algorithms are superior to the optimal designs obtained using SA,
PSO, GWO and Rao algorithms. Also, the computational time taken by
SAMP-Rao algorithms is less than SA and PSO algorithms, and there is very
small difference between the time taken by Rao and SAMP-Rao algorithms for
this problem. Figure 30 illustrates the speed of convergence of Rao and SAMP-
Rao algorithms to reach the optimal solution for case 1 of this problem. For
this problem, the convergence speed of the SAMP-Rao-1 algorithm is better
and it has converged first to optimum solution at the 30th generation.

The proposed SAMP-Rao algorithms have provided better or competitive
solutions for the constrained complex engineering design problems as compared
to the other advanced optimization algorithms. Furthermore, the computational
results of constrained engineering design problems have shown that the proposed
SAMP-Rao algorithms have the ability to obtain better solutions for real-world
constrained optimization problems in less number of iterations. The comparison
of results has shown the effectiveness and robustness of SAMP-Rao algorithms
over the other considered algorithms.

Figure 30. Convergence plot for the spur gear train problem with expanded search space.

Table 33. Friedman rank test for engineering design problems 1–6.

Algorithm WAO SSA MBA WCA GWO

ER-

WCA ALO MFO PSO ABC

Rao-

1

Rao-

2

Rao-

3

SAMP

Rao-1

SAMP

Rao-2

SAMP

Rao-3

Friedman ranks 14.75 10.50 10.17 9.33 14.33 10.00 11.83 8.33 11.42 14.00 3.00 5.50 5.33 1.50 3.17 2.83
χ2 77.173
p-value 0.00001 (<0.05)
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Furthermore, the performance of the proposed algorithms for the considered
engineering design problems is validated using the Friedman rank test explained
earlier. Table 33 presents the average rank of the algorithms provided by the
Friedman test considering engineering design problems 1–6. FromTable 33, it can
be observed that the rank of SAMP-Rao algorithms is better than the correspond-
ing Rao algorithms as well as the other algorithms considered. The SAMP-Rao-1
algorithm has obtained first rank among 16 algorithms with an average score of

Figure 31. Friedman rank test for engineering design problems 1–6.

Table 34. Friedman rank test for engineering design problems 7–13.
Algorithm Rao-1 Rao-2 Rao-3 SAMP Rao-1 SAMP Rao-2 SAMP Rao-3

Friedman ranks 4 4.57 4.86 2.43 2.57 2.71
χ2 13.735
p-value 0.0174 (<0.05)

Figure 32. Friedman rank test for engineering design problems 7–13.
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1.5. As the p-value of the Friedman test is very less than 0.05, it confirms the high
significance of proposed SAMP-Rao algorithms over the other algorithms for the
design problems 1–6. Figure 31 presents the Friedman ranks of algorithms
considered for the design problems 1–6 on a column chart. From Figure 31, it
can be observed that the performance ranking of the algorithms for the design
problems 1–6 is: SAMP-Rao-1, SAMP-Rao-3, Rao-1, SAMP-Rao-2, Rao-3, Rao-2,
MFO, WCA, ER-WCA, MBA, SSA, PSO, ALO, ABC, GWO, and at last WAO.

Table 34 presents the average rank of the considered algorithms provided by
Friedman test considering engineering design problems 7–13. From Table 34, it
can be observed that the rank of SAMP-Rao algorithms is better than the
corresponding basic Rao algorithms. The SAMP-Rao-1 algorithm has obtained
the first rank among the 6 algorithms with an average score of 2.43. As the
p-value of the Friedman test is less than 0.05, it confirms the significance of
proposed SAMP-Rao algorithms over Rao algorithms for the design problems
7–13. Figure 32 presents the Friedman ranks of algorithms considered for the
design problems 7–32 on a column chart. From Figure 32, it can be observed
that the performance ranking of the algorithms for the design problems 7–13 is:
SAMP-Rao-1, SAMP-Rao-2, SAMP-Rao-3, Rao-1, Rao-2, and Rao-3.

Conclusions

In this work, the self-adaptive multi-population Rao algorithms are proposed. The
performance of the proposed algorithms is explored over 25 unconstrained
benchmark problems and 14 constrained engineering design optimization pro-
blems having a number of constraints and mixed type (continuous, discrete, and
integer) design variables. From the comparison of results, it can be concluded that
the proposed algorithms are effective and robust than the other optimization
algorithms considered by the previous researchers for solving the benchmark
problems as well as the complex constrained engineering design problems. The
performance of the proposed algorithms is validated using the Friedman rank test
and it can be concluded that the performance of proposed algorithms is significant
than the other algorithms considered. The concept of SAMP-Rao algorithms is
very simple and they are not having any algorithm-specific control parameters to
be tuned. In the proposed algorithms, the basic Rao algorithms are upgraded using
multi-population search process. The diversity of search is improved due tomulti-
population search scheme. Also, the exploration and exploitation rates of search
process have been maintained with adaptive change of multi-population based on
fitness values. In addition, the proposed algorithms have the potential to handle
mixed-type design variables while satisfying a number of complex design con-
straints simultaneously. Furthermore, the computational complexity of basic Rao
algorithms is reduced with the help of proposed SAMP-Rao algorithms. In future
studies, the proposed algorithms will be used to solve other engineering design
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optimization problems. Also, multi-objective engineering design optimization
problems will be attempted using the proposed algorithms.
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Appendix B. Formulations of the considered engineering design
optimization problems

Problem 1: Belleville spring

Design variables; xf g ¼ Do;Di; t; h½ � (B:1)

Objective function:

f ðxÞ ¼ 0:07075π D2
o � D2

i

� �
t (B:2)

Design constraints:

C1 xð Þ ¼ 4Eδmax

ð1� μ2ÞαD2
e
β h� 0:5δmaxð Þ þ γ:t½ � � σ (B:3)

C2 xð Þ ¼ 4Eδmax

ð1� μ2ÞαD2
e

h� 0:5δmaxð Þ h� δmaxð Þt þ t3
� � � Pmax (B:4)

C3 xð Þ ¼ δl � δmax; C4 xð Þ ¼ H � t � h; (B:5)

C5 xð Þ ¼ Do � Dmax; C6 xð Þ ¼ Do � Di; (B:6)

C7 xð Þ ¼ h
Do � Di

� �
� 0:3 (B:7)

5 � Do � 15; 5 � Di � 15; 0:2 � t � 0:25; 0:2 � h � 0:25 (B:8)

where K ¼ Do

Di
; α ¼ 6

π lnðKÞ
K � 1
K

� �2

; (B:9)

β ¼ 6
π lnðKÞ

K � 1
lnðKÞ � 1

� �
; γ ¼ 6

π lnðKÞ
K � 1
2

� �
(B:10)

a ¼ h
t
; δl ¼ h� f ðaÞ; Pmax ¼ 5400lb; δmax ¼ 0:2in; (B:11)

σ ¼ 200kPsi; E ¼ 30e6Psi; μ ¼ 0:3; H ¼ 2in; (B:12)

Dmax ¼ 12:01in: (B:13)

Problem 2: Car side impact design

Design variables; xf g ¼ x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11½ � (B:14)

Objective function:

f ðxÞ ¼ 4:9x1 þ 6:67x2 þ 6:98x3 þ 4:01x4 þ 1:78x5 þ 2:73x7 þ 1:98 (B:15)

Design constraints:

C1ðxÞ ¼ 0:3717x2x4 þ 0:00931x2x10 þ 0:484x3x9
� 0:01343x6x10 þ 0:16 � 0

(B:16)
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C2ðxÞ ¼ 0:0159x1x2 þ 0:188x1x8 þ 0:019x2x7 � 0:0144x3x5
� 0:0008757x5x10 � 0:080405x6x9 � 0:00139x8x11
� 0:00001575x10x11 þ 0:059 � 0

(B:17)

C3ðxÞ ¼ 0:106� 0:00817x5 þ 0:131x1x8 þ 0:0704x1x9
� 0:03099x2x6 þ 0:018x2x7 � 0:0208x3x8
� 0:121x3x9 þ 0:00364x5x6 � 0:0007715x5x10
þ 0:0005354x6x10 � 0:00121x8x11 � 0

(B:18)

C4ðxÞ ¼ 0:246þ 0:061x2 þ 0:163x3x8 � 0:001232x3x10

þ 0:166x7x9 � 0:227x22 � 0
(B:19)

C5ðxÞ ¼ 3:02þ 4:2x1x2 � 3:818x3 � 0:0207x5x10
þ 7:7x7x8 � 6:63x6x9 � 0:32x9x10 � 0

(B:20)

C6ðxÞ ¼ �1:86þ 5:057x1x2 � 2:95x3 þ 11x2x8 � 0:1792x10
þ 9:98x7x8 þ 0:0215x5x10 � 22x8x9 � 0

(B:21)

C7ðxÞ ¼ 12:9x1x8 þ 9:9x2 � 0:1107x3x10 � 14:36 � 0 (B:22)

C8ðxÞ ¼ �0:72þ 0:5x4 þ 0:19x2x3 þ 0:0122x4x10

� 0:009325x6x10 � 0:000191x211 � 0
(B:23)

C9ðxÞ ¼ �0:68þ 0:674x1x2 � 0:02054x3x10 þ 1:95x2x8
� 0:028x6x10 þ 0:0198x4x10 � 0

(B:24)

C10ðxÞ ¼ �0:75þ 0:489x3x7 þ 0:843x5x6 þ 0:0556x9x11

� 0:0432x9x10 þ 0:000786x211 � 0
(B:25)

where 0:5 � xi � 1:5 for i ¼ 1; . . . . . . :; 7 (B:26)

x8; x9 2 0:192; 0:345½ � and� 30 � x10; x11 � 30 (B:27)

Problem 3: Coupling with a bolted rim

Design variables; xf g ¼ d;N;RB;M½ � (B:28)

Objective function:
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f ðxÞ ¼ β1
RB þ φ4ðdÞ þ c

RM

� �
þ β2

N
NM

� �
þ β3

M
MT

� �
(B:29)

Design constraints:

C1ðxÞ ¼ KðdÞ � αM
NRB

� 0; C2ðxÞ ¼ 2πRB

N
� ϕ5ðdÞ � 0 (B:30)

C3ðxÞ ¼ RB � RM � ϕ4ðdÞ � 0; C4ðxÞ ¼ d� 6 � 0 (B:31)

C5ðxÞ ¼ 24� d � 0; C6ðxÞ ¼ N � NM � 0 (B:32)

C7ðxÞ ¼ Nmax � N � 0; C8ðxÞ ¼ RB � RM � 0 (B:33)

C9ðxÞ ¼ Rmax � RB � 0; C10ðxÞ ¼ M �MT � 0 (B:34)

C11ðxÞ ¼ Mmax �M � 0 (B:35)

where KdðxÞ ¼
0:9fmReπ ϕ1 dð Þ� �2

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

4 0:16ϕ3 dð Þþ0:583ϕ2 dð Þf1ð Þ
ϕ1 dð Þ

	 
2s (B:36)

α ¼ 1:5; Re ¼ 627MPa; MT ¼ 40Nm; Mmax ¼ 100Nm (B:37)

c ¼ 5mm; NM ¼ 8; Nmax ¼ 100; β1 ¼ β2 ¼ β3 ¼ 1 (B:38)

RM ¼ 50mm; Rmax ¼ 100mm; 6 � d � 24 (B:39)

50 � RB � 100; 8 � N � 100; 40 � M � 100 (B:40)

Problem 4: Rolling element bearing

Design variables; xf g ¼ Dm;Db; fi; fo;Z;KDmin;KDmax; β; ε; e½ � (B:41)

Objective function:

f xð Þ ¼ Cd ¼ fcZ
2=3Db

1:8 if Db � 25:4mm

3:647fcZ
2=3Db

1:4 if Db > 25:4mm

8<
: (B:42)

where
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fc ¼ 37:91 1þ 1:04
1� γ

1þ γ

� �1:72 fi 2fo � 1ð Þ
fo 2fo � 1ð Þ
� �0:41

( )10=32
64

3
75
�0:3

γ0:3 1� γð Þ1:39

1þ γð Þ1=3

2
4

3
5 2fi

2fi � 1

	 
0:41

(B:43)

γ ¼ Dbcosα=Dm ðHere α ¼ 0Þ (B:44)

Design constraints:

C1 xð Þ ¼ φ0

2sin�1 Db=Dmð Þ þ 1 � Z (B:45)

C2 xð Þ ¼ 2Db � D� dð ÞKDmin � 0 (B:46)

C3 xð Þ ¼ D� dð ÞKDmax � 2Db � 0 (B:47)

C4 xð Þ ¼ βw� Db � 0 (B:48)

C5 xð Þ ¼ Dm � Dþ dð Þ 0:5� eð Þ � 0 (B:49)

C6 xð Þ ¼ Dþ dð Þ 0:5þ eð Þ � Dm � 0 (B:50)

C7 xð Þ ¼ 0:5 D� Db � Dmð Þ � ε� Dbð Þ � 0 (B:51)

C8 xð Þ ¼ fi � 0:515 � 0 (B:52)

C9 xð Þ ¼ fo � 0:515 � 0 (B:53)

where

φ0 ¼ 2π � 2cos�1
D
2 � T � Db
� �2 � d

2 þ T
� �2 þ U2

2 D
2 � T � Db
� �

U

" #
(B:54)

T ¼ D� d � 2Db

4
; U ¼ D� d

2
� 3T (B:55)

D ¼ 160; d ¼ 90; w ¼ 30 (B:56)

0:5ðDþ dÞ � Dm � 0:6ðDþ dÞ; 0:15ðD� dÞ � Db � 0:45ðD� dÞ (B:57)

0:515 � fi � 0:6; 0:515 � fo � 0:6; 4 � Z � 50 (B:58)

0:4 � KDmin � 0:5; 0:6 � KDmax � 0:7; 0:3 � ε � 0:4 (B:59)

0:02 � e � 0:1; 0:6 � β � 0:85 (B:60)

Problem 5: Speed reducer

Design variables; xf g ¼ b;m;Z; l1; l2; d1; d2½ � (B:61)
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Objective function:

f xð Þ ¼ 0:7854bm2 3:3333Z2 þ 14:9334Z � 43:0934
� �

� 1:508b d21 þ d22
� �þ 7:4777 d31 þ d32

� �
þ 0:7854 l1d

2
1 þ l2d

2
2

� � (B:62)

Design constraints:

C1 xð Þ ¼ 27� bm2Z � 0 (B:63)

C2 xð Þ ¼ 397:5� bm2Z2 � 0 (B:64)

C3 xð Þ ¼ 1:93l31 �mZd41 � 0 (B:65)

C4 xð Þ ¼ 1:93l32 �mZd42 � 0 (B:66)

C5 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745l1=mZð Þ2 þ ð16:9� 106Þ

q
� 110d31 � 0 (B:67)

C6 xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
745l2=mZð Þ2 þ ð157:5� 106Þ

q
� 85d32 � 0 (B:68)

C7 xð Þ ¼ mZ � 40 � 0 (B:69)

C8 xð Þ ¼ 5m� b � 0 (B:70)

C9 xð Þ ¼ b� 12m � 0 (B:71)

C10 xð Þ ¼ 1:5d1 � l1 þ 1:9 � 0 (B:72)

C11 xð Þ ¼ 1:1d2 � l2 þ 1:9 � 0 (B:73)

2:6 � b � 3:6; 0:7 � m � 0:8; 17 � Z � 28; 7:3 � l1 � 8:3; (B:74)

7:8 � l2 � 8:3; 2:9 � d1 � 3:9; 5 � d2 � 5:5 (B:75)

Problem 6: Step-cone pulley

Design variables; xf g ¼ d1; d2; d3; d4;w½ � (B:76)

Objective function:

f ðxÞ ¼ π

4
ρw

d21 1þ N1
N

� �2h i
þ d22 1þ N2

N

� �2h i
þ

d23 1þ N3
N

� �2h i
þ d24 1þ N4

N

� �2h i
8<
:

9=
; (B:77)

Design constraints:

C1 xð Þ ¼ c1 � c2 ¼ 0 (B:78)

C2 xð Þ ¼ c1 � c3 ¼ 0 (B:79)

C3 xð Þ ¼ c1 � c4 ¼ 0 (B:80)
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C4;5;6;7 xð Þ ¼ Ri � 2 � 0 i ¼ 1; :::; 4 (B:81)

C8;9;10;11 xð Þ ¼ Pi � ð0:75� 745:6998Þ � 0 i ¼ 1; :::; 4 (B:82)

where
ci is the belt length to obtain speed Ni and can be calculated by

ci ¼ πdi
2

Ni

N
þ 1

� �
þ

Ni
N � 1
� �2

d2i
4a

þ 2a i ¼ 1; :::; 4 (B:83)

Ri is the tension ratio and can be calculated by

Ri ¼ exp μ π � 2sin�1 di
2a

Ni

N
� 1

� �� �	 
� �
i ¼ 1; :::; 4 (B:84)

Pi is the power transmitted at each step and can be calculated by

Pi ¼ stw 1� exp �μ π � 2sin�1 di
2a

Ni

N
� 1

� �� �	 
� �	 

� πdiNi

60

� �
i ¼ 1; :::; 4

(B:85)

ρ ¼ 7200kg=m3; μ ¼ 0:35; a ¼ 3m; t ¼ 8mm; s ¼ 1:75MPa (B:86)

16 � w � 100; 40 � di � 100 i ¼ 1; :::; 4: (B:87)

Problem 7: Welded beam

Design variables; ~x ¼ x1; x2; x3; x4½ � ¼ h; l; t; b½ � (B:88)

Objective function:

Minimize f ~xð Þ ¼ 1:10471x21x2 þ 0:04811x3x4 14:0þ x2ð Þ (B:89)

Design constraints:

C1 ~xð Þ ¼ τ ~xð Þ � τmax � 0 (B:90)

C2 ~xð Þ ¼ σ ~xð Þ � σmax � 0 (B:91)
C3 ~xð Þ ¼ P � Pc ~xð Þ � 0 (B:92)

C4 ~xð Þ ¼ δ ~xð Þ � δmax � 0 (B:93)

C5 ~xð Þ ¼ x1 � x4 � 0 (B:94)

C6 ~xð Þ ¼ 0:125� x1 � 0 (B:96)

C7 ~xð Þ ¼ 0:10471x21 þ 0:04811x3x4ð14:0þ x2Þ � 5:0 � 0 (B:97)

0:1 � x1 � 2; 0:1 � x2 � 10; 0:1 � x3 � 10; 0:1 � x4 � 2 (B:98)

where,
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τ ~xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ0Þ2 þ 2τ0τ

x2
2R

þ ðτÞ2
r

(B:100)

τ0 ¼ Pffiffiffi
2

p
x1x2

; τ ¼ MR
J

; M ¼ P Lþ x2
2

� �
(B:101)

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22
4
þ x1 þ x3

2

� �2r
(B:102)

J ¼ 2
ffiffiffi
2

p
x1x2

x22
12

þ x1 þ x3
2

� �2	 
� �
(B:103)

σ ~xð Þ ¼ 6PL
x4x23

; δ ~xð Þ ¼ 4PL3

Ex33x4
(B:104)

Pc ~xð Þ ¼ 4:013E
ffiffiffiffiffiffi
x23x

6
4

36

q
L2

1� x3
2L

ffiffiffiffiffiffi
E
4G

r !

P ¼ 6000lb; L ¼ 14in; E ¼ 30� 106psi;G ¼ 12� 106psi;

σmax ¼ 30000psi; τmax ¼ 13600psi; δmax ¼ 0:25in

Problem 8: I-beam

Design variables; ~x ¼ x1; x2; x3; x4½ � ¼ b; h; tw; th½ � (B:106)

Objective function:

Minimize f ~xð Þ ¼ 5000
tw h�2tfð Þ3

12 þ bt3f
6 þ 2btf

h�tf
2

� �2 (B:107)

Design constraint:

C1 ~xð Þ ¼ 2btw þ twðh� 2tf Þ � 300 (B:108)

10 � x1 � 50; 10 � x2 � 80; 0:9 � x3 � 5; 0:9 � x4 � 5 (B:109)

Problem 9: Cantilever beam

Design variables; ~x ¼ x1; x2; x3; x4; x5½ � (B:110)

Objective function:

Minimize f ~xð Þ ¼ 0:0624ðx1 þ x2 þ x3 þ x4 þ x5Þ (B:111)

Design constraint:

C1 ~xð Þ ¼ 61
x31

þ 37
x32

þ 19
x33

þ 7
x34

þ 1
x35

� 1 (B:112)

0:01 � xi � 100 for i ¼ 1; 2; 3; 4; 5 (B:113)
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Problem 10: Tension/compression spring

Design variables; ~x ¼ x1; x2; x3½ � ¼ d;D;N½ � (B:114)

Objective function:

Minimize f ~xð Þ ¼ ðx3 þ 2Þx2x21 (B:115)

Design constraints:

C1 ~xð Þ ¼ 71785x41 � x32x3 � 0 (B:116)

C2 ~xð Þ ¼ 4x22 � x1x2
12566ðx2x31 � x41Þ

þ 1
5108x21

� 1 � 0 (B:117)

C3 ~xð Þ ¼ x22x3 � 140:45x1 � 0 (B:118)

C4 ~xð Þ ¼ x1 þ x2 � 1:5 � 0 (B:119)

0:05 � x1 � 2; 0:25 � x2 � 1:3; 2 � x3 � 15 (B:120)

Problem 11: Pressure vessel

Design variables; ~x ¼ x1; x2; x3; x4½ � ¼ Ts;Th;R; L½ � (B:121)

Objective function:

Minimize f ~xð Þ ¼ 0:6224x1x3x4 þ 1:7781x2x
2
3 þ 3:1661x21x4 þ 19:84x21x3 (B:122)

Design constraints:

C1 ~xð Þ ¼ 0:0193x3 � x1 � 0 (B:123)

C2 ~xð Þ ¼ 0:00954x3 � x2 � 0 (B:124)

C3 ~xð Þ ¼ 1296000� πx23x4 �
4
3
πx33 � 0 (B:125)

C4 ~xð Þ ¼ x4 � 240 � 0 (B:126)

x1; x2 2 0:0625; 0:125; :::::::; 1:1875; 1:25½ �; 10 � x3; x4 � 200 (B:127)

Problem 12: Gear train

Design variables; ~x ¼ x1; x2; x3; x4½ � ¼ nA; nB; nC; nD½ � (B:128)

Objective function:

Minimize f ~xð Þ ¼ 1
6:931

� x3x2
x1x4

� �2

(B:129)
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subject to : 12 � x1; x2; x3; x4 � 60 (B:130)

Problem 13: 3-bar truss

Design variables,

~x ¼ x1; x2½ � ¼ A1;A2½ � (B:131)

Objective function:

Minimize f ~xð Þ ¼ 2
ffiffiffi
2

p
x1 þ x2

� �
� L (B:132)

Design constraints:

C1 ~xð Þ ¼
ffiffiffi
2

p
x1 þ x2

� �
P � σ

ffiffiffi
2

p
x21 þ 2x1x2

� �
� 0 (B:133)

C2 ~xð Þ ¼ x2P � σ
ffiffiffi
2

p
x21 þ 2x1x2

� �
� 0 (B:134)

C3 ~xð Þ ¼ P � σ
ffiffiffi
2

p
x2 þ x1

� �
� 0 (B:135)

0 � x1; x2 � 1 (B:136)

where L ¼ 100cm; P ¼ 2KN=cm2 and σ ¼ 2KN=cm2

Problem 14: Spur gear train

Design variables; xf g ¼ b;Z1; d1; d2;m½ � (B:137)

Objective function:

f xð Þ ¼ π

4
ρ

1000
bZ2

1m
2 a2 þ 1
� �� D2

i � d2o
� �

l� bwð Þ � nbwd
2
p � b d21 þ d22

� �h i
(B:138)

Design constraints:

C1ðxÞ ¼ b1 � Fs (B:139)

C2ðxÞ ¼ b2 � Fs=Fp
� �

(B:140)

C3ðxÞ ¼ b3 � d31 (B:141)

C4ðxÞ ¼ b4 � d32 (B:142)

C5ðxÞ ¼ b5 � Z1ð1þ aÞm
2

� 0 (B:143)

where a ¼ 4; ρ ¼ 8mg=m3; P ¼ 7:5kW; n ¼ 6 (B:144)

N1 ¼ 1500rpm; bw ¼ 3:5m; lw ¼ 2:5m; Dr ¼ amZ1 � 2:5m (B:145)

do ¼ d2 þ 25; Di ¼ Dr � 2lw; D1 ¼ mZ1; D2 ¼ amZ1 (B:146)
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dp ¼ 0:25ðDi � doÞ; N2 ¼ N1=a; Z2 ¼ Z1D2=D1 (B:147)

v ¼ πD1N1=60000; b5 ¼ 151:5; b4 ¼ ð48:68e6PÞ=N2τ (B:148)

b3 ¼ ð48:68e6PÞ=N1τ; b1 ¼ ð1000P=vÞ; Kv ¼ 0:389 (B:149)

Kw ¼ 0:8; σ ¼ 294:3MPa; τ ¼ 19:62MPa; y ¼ 0:102 (B:150)

Fs ¼ πKvKwbmyσ; Fp ¼ 2KvKwbD1Z2=ðZ1 þ Z2Þ (B:151)

Ranges of design variables:

Case 1 : 20 � b � 32; 10 � d1 � 30; 30 � d2 � 40 (B:152)

18 � Z1 � 25 andm ¼ 2:75; 3; 3:5; 4½ � (B:153)

Case 2 : 10 � b � 35; 10 � d1 � 30; 10 � d2 � 40 (B:154)

18 � Z1 � 25 andm ¼ 1; 1:25; 1:5; 2; 2:75; 3; 3:5; 4½ � (B:155)
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