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A Recurrent Neural Network approach for whole genome 
bacteria identification
Luis Lugo and Emiliano Barreto- Hernández

Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia

ABSTRACT
The identification of bacteria plays an essential role in multiple 
areas of research. Those areas include experimental biology, 
food and water industries, pathology, microbiology, and evolu-
tionary studies. Although there exist methodologies for identi-
fication, a transition to a whole-genome sequence-based 
taxonomy is already undergoing. Next-Generation Sequencing 
helps the transition by producing DNA sequence data effi-
ciently. However, the rate of DNA sequence data generation 
and the high dimensionality of such data need faster computer 
methodologies. Machine learning, an area of artificial intelli-
gence, has the ability to analyze high dimensional data in 
a systematic, fast, and efficient way. Therefore, we propose 
a sequential deep learning model for bacteria identification. 
The proposed neural network exploits the vast amounts of 
information generated by Next-Generation Sequencing, in 
order to extract an identification model for whole-genome bac-
teria sequences. After validating the identification model, the 
bidirectional recurrent neural network outperformed other clas-
sification approaches.

KEYWORDS 
Bacteria identification; whole 
genome sequence; recurrent 
neural networks

Introduction

The identification of bacteria plays an important role in multiple areas of 
research. Experimental research in biology benefits from the elegant mechan-
isms of gene activity control in bacteria, the rapid rate at which they grow, and 
the powerful genetics they have (Lodish et al. 2004). Pathology and micro-
biology also benefit from bacteria taxonomy as it serves as the basis for 
understanding certain diseases (Mohamad et al. 2014). Moreover, fast identi-
fication of bacteria is critical to ensure the quality of water and food products 
(Singhal et al. 2015). It is also important from the evolutionary standpoint 
because it allows the documentation of changes in genes and proteins (Lodish 
et al. 2004).

There exist a number of criteria for the classification of bacteria and 
archaea, including morphology, genome size, lifestyle, relevance to human 
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disease, molecular phylogeny using rRNA, and genomic sequence analysis 
(Mohamad et al. 2014; Pevsner 2015). Methods for bacteria identification 
include mass spectrometry (Singhal et al. 2015), wwhole-genomesequencing 
for clinical samples (Hasman et al. 2013), genome-wide Average Nucleotide 
Identity (Garrity and Kraft 2016; Varghese et al. 2015), pattern recognition in 
image processing (Mohamad et al. 2014), and deep neural network architec-
tures (Bosco and Di Gangi 2016; Rizzo et al. 2015).

Moreover, as advances in NNext-GenerationSequencing (NGS) generate 
high dimensional biological data at a faster rate (Schmidt and Hildebrandt 
2017), and more curated databases of biological sequences are publicly avail-
able, there exists the need to process considerable amounts of high dimen-
sional data in a systematic and efficient way. The unprecedented amount of 
genomic data generated by NGS platforms increases the demand for large- 
scale data analysis (Pais et al. 2014). Extracting useful information from those 
large datasets is challenging. Manual processing of such volumes of data is 
slow, expensive, and impractical. It is also error prone and highly subjective 
(Fayyad, Piatetsky-Shapiro, and Smyth 1996). Often, traditional software tools 
cannot process large datasets or efficient processing algorithms cannot be 
developed beforehand (Dahl 2015; Tan et al. 2018). In fact, available software 
systems and algorithms for biological sequence processing should be 
improved. Computational tasks pose some of the most significant challenges 
in processing efficiency regarding WWhole-GenomeSequencing (WGS) pro-
jects (Scholz, Lo, and Chain 2012).

Deep neural networks provide a set of methods to analyze such high 
dimensional data efficiently (Murphy 2012), generating an explosion of deep 
learning applications for research in bioinformatics (Min, Lee, and Yoon 
2016). Computational biology is another area that is taking the benefits of 
deep neural network approaches to leverage very large datasets of high dimen-
sional data. Biological datasets are explored to extract hidden structures within 
them and to make accurate predictions. Applications of deep neural networks 
are found in regulatory genomics, drug discovery, cellular imaging, medical 
imaging, genomic data mining, biomedical signal processing, and sequence 
classification (Angermueller et al. 2016; Bosco and Di Gangi 2016; Min, Lee, 
and Yoon 2016; Nguyen et al. 2016; Rizzo et al. 2015; Webb 2018).

(Rizzo et al. 2015) proposed a machine learning architecture for DNA 
sequence classification. Its implementation uses Theano, a python library for 
artificial intelligence models. The system proposed is a convolutional neural 
network for processing RNA sequences. The representation of RNA sequences 
is performed using k-mers occurrences. The goal is to take advantage of 
convolutional neural networks ability to extract hidden features. Thus, the 
model can extract features represented by k-mers from input sequences. As far 
as testing is concerned (Rizzo et al. 2015) chose 16S rRNA sequences. They 
compare the proposed architecture with existing machine learning models, 
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and a previous model developed by the team. The previous model by the same 
team is a classifier based on a General Regression Neural Network (GRNN) 
model. The research concludes that CNN models get very good results at the 
different taxonomic levels. CNNs outperformed existing machine learning 
classifiers when processing full-length 16S rRNA sequences or 500bp frag-
ments. Nonetheless, results obtained by the CNN are very similar to those 
obtained by the GRNN model. This happens when the models are processing 
full-length 16S rRNA sequences. When the models process 500bp 16S rRNA 
sequence fragments, the CNN architecture manages to outperform all the 
other models. That is quite important because in metagenomics, researchers 
usually have access only to fragments of DNA sequences.

The work in Bosco and Di Gangi (2016) compared two different types of 
deep learning models for automatic classification of bacteria species. 
Classification is performed without a previous feature extraction process. 
They propose convolutional neural networks and recurrent neural networks. 
For recurrent neural networks, authors use the long-short-term memory 
(LTSM) model. For testing purposes, the deep learning architecture was fed 
with a dataset encoded according to the IUPAC nucleotide representation. 
The dataset is downloaded from the Ribosomal Database Project (RDP) (Cole 
et al. 2013). The dataset uses the 16S ribosomal RNA to identify five ordered 
taxonomic ranks (Phylum, Class, Order, Family, and Genus). One architecture 
implements a separate neural network for each taxonomic rank, while the 
other architecture uses multitask learning by adding separate layers for each 
taxonomic rank on the top of the processing layers. Their research allowed to 
conclude that, overall, LSTMs have a better classification output than CNNs. 
Another conclusion states that multitask learning improves the performance 
of LSTM architectures, but it harms CNN models (Bosco and Di Gangi 2016).

Our main contribution is the application of deep neural networks to 
improve existing DNA sequence analysis tools for WWhole- 
GenomeSequence classification of bacteria. An improved identification system 
has the potential to help the ongoing transition from 16s ribosomal RNA 
taxonomy to a whole genome-based bacteria taxonomy (Garrity and Kraft 
2016). Also, it takes advantage of the increasing amount of data generated 
from NGS technologies. This is particularly important because other methods 
become computationally more expensive as more data is available. But deep 
learning methods are data-intensive applications that benefit from an increas-
ing amount of data available. Therefore, we propose a sequential deep 
learning architecture – a recurrent neural network – for bacteria identification 
(Figure 1), using NGS data.
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Methods

The identification of bacteria using their whole-genome sequences is a part of 
a broader set of tasks in machine learning: sequence labeling (Graves 2012). In 
sequence labeling, an input sequence of data points is transcribed with 
a discrete set of output labels. It is common to have sequence labeling tasks 
in time series data, where each data point in the input sequence is a time step. 
Nonetheless, the same approach works for non-temporal tasks such as protein 
secondary structure prediction and DNA sequence classification (Graves 
2012).

Sequence classification is the most restrictive case of sequence labeling 
applications. The input sequence should be matched to a label sequence of 
unitary length. But this case has an advantage over the other cases because the 
algorithm can process the whole sequence before generating the label. This 
kind of classification is what we perform with the bacterial wwhole- 
genomesequences. Sequential models not only have the advantage of robust-
ness against distortions and shifting in the input sequence, but also can dis-
cover what context information is essential for a correct output, as they can 
acquire a better knowledge of the overall sequence structure (Graves 2012).

The classical error rate in pattern classification – the classification error 
rate – enables the computation of a loss function for the models. The error rate 
is the relationship between correct input-target outputs and the testing set size 
(Graves 2012). For neural network outputs in classification systems with more 
than two classes, a softmax function provides normalized output activations 
that represent the class probabilities (Graves 2012). True class probabilities are 
obtained by representing the true labels with a 1-of-K coding scheme (Cho 
et al. 2014), a binary vector with one-hot encoding (Section 2.2). The cross 
entropy loss function provides the target function that we minimize to train 
the network. By doing so, we minimize the classification error rate.

Considering metrics for model evaluation, accuracy alone could be a poor 
estimator of neural network performance in some applications. Accuracy 
defines the relationship between the correct outputs and the total number of 
outputs. A more robust approach include the calculation of precision and 
recall. Precision defines the fraction of detections reported by the network that 
are correct. On the other hand, recall defines the fraction of true events in the 
testing set that were successfully detected by the network. A common sum-
marization of neural network performance combines precision p and recall r 
into the balanced F-score (Goodfellow, Bengio, and Courville 2016; Rizzo et al. 
2015). We use the four metrics to assess our model in section 3.
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Recurrent Neural Networks

Sequences found in biology naturally fit the processing power of recurrent 
neural networks (RNNs). That happens because of the temporal modeling 
capabilities of RNNs. RNNs are inspired by the cyclical connection of the 
neurons inside our brain. They store information from input sequences by 
using iterative function loops. RNNs are an ideal architecture for sequence 
labeling tasks because they store context information in a flexible manner. By 
learning what to store and what to ignore, they accept input data in different 
types and representations. Also, They can understand sequential patterns in 
the presence of sequential noise (Graves 2012).

In some applications regarding sequence analysis, the current output 
depends on both past inputs and future inputs. RNNs process input data in 
one direction, thus, context information is available from one side of the 
sequence. For instance, in time series data, context is available from the past 
but there is no way data after the current point in time can alter the context. 
Therefore, bidirectional RNNs were created to cope with those sequence 
analysis requirements. In this kind of networks, we assemble two hidden 
layers. One processes the sequence from the first input while the other 
processes the sequence from the last input. The output layer is connected to 
both backward and forward hidden layers and it only generates the output 
after processing the whole sequence (Graves 2012; Lipton, Berkowitz, and 
Elkan 2015).

Cells for the bidirectional layers include Long Short-Term Memory (LSTM) 
and Gated Recurrent Units (GRUs). LSTMs are a redesign of RNNs around 
a memory cell. The redesign improves their ability to store context informa-
tion on very long sequences. In fact, they solve complex long-time-lag tasks 
that have never been solved by existing models (Graves 2012). GRUs are 
motivated by LSTMs but are simpler to compute and implement. Also, they 
can dynamically control the time scale and forgetting behavior of the units in 
the network. Units comprise update and reset gates. Update gates select if the 
hidden state will be updated with a new hidden state. On the other hand, reset 
gates determine if the previous hidden state will be ignored (Martens and 
Sutskever 2011; Cho et al. 2014; Goodfellow, Bengio, and Courville 2016).

Sequence Representation

Regarding sequence representations, a one-hot vector (Giang Nguyen et al. 
2016) encoding converts genomic or protein sequences into a two- 
dimensional numerical matrix. Another digital encoding, the k-mers repre-
sentation (Rizzo et al. 2015), generates a ffixed-lengthrepresentation using 
occurrences of overlapping subsequences with a length of k. K-mers are 
small DNA or protein sequences of k length. Based on the occurrence of 
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those small sequences, the system computes and spectral representation of 
input data. However, an important aspect of sequence labeling problems is the 
use of context in the input sequence. Based on results from Natural Language 
Processing (NLP), the seq2vec (Kimothi et al. 2016) extends the use of a single 
k length in a k-mers representation, to create a distributed representation of 
the sequences in a Euclidean space. The distributed representation, which 
considers different k’s, has the potential to capture contextual information in 
the original sequence. The dna2vec system (Ng 2017) uses a distributed 
representation as well, considering k ¼ f3; 4; 5; 6; 7; 8g to generate vectors in 
a 100-dimensional space. The cosine similarity of those vectors is correlated to 
the Needleman–Wunsch similarity score.

The distributed representation provides contextual information and 
helps to deal with high dimensionality in the sequences – an important 
aspect considering that neural networks benefit from reasonably compact 
continuous vector inputs (Graves 2012; Ng 2017). An additional benefit is 
the invariance of the distributed representation to the order of the nodes in 
the FASTA file. Although scaffolds are ordered in a FASTA file, contigs are 
not necessarily ordered. Thus, we use a distributed representation for 
encoding the bacterial whole-genome sequences. Our representation takes 
inspiration from the multiple k-mers in dna2seq, but we consider a group 
of three k’s, namely k ¼ f3; 4; 5g. When we added 6-mers to the sequence 
representation, we found no improvement on the model performance, 
thus, we consider only k ¼ f3; 4; 5g. Our set of k’s generates 
a concatenated vector of only 1344 positions. Once the concatenated vector 
of histograms is calculated, we proceed to the standardization of the data, 
which is also known as scaling (Angermueller et al. 2016; Graves 2012). 
After standardizing input vectors, histograms for each k-mer are padded 
with zero to the length of the largest histogram and stacked into a matrix 
of 3 × 1024.

Implementation

The whole system is implemented in Python 3.6. Three main modules are 
considered for the Python code: download module, dataset module, and 
identification system module.

The download module takes advantage of the urllib.request library to down-
load compressed FASTA files into the local disk, using the NCBI FTP end-
point. On the other hand, the dataset module loads FASTA files from local disk 
and computes their distributed k-mers based representation.

The identification system module is implemented using the Tensorflow 
deep learning framework – an advanced dataflow system that provides one 
of the most efficient implementations for RNNs (Angermueller et al. 2016). 
Based on the recurrent neural network architecture in (Liu et al. 2016) – that 
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processes protein sequences of up to 800 residues – our base classification 
system has a bidirectional GRU hidden layer with 128 units. The forward and 
backward final states are concatenated before applying a dropout of 0.5. The 
model uses only a fully connected layer that takes the dropout result as input. 
Softmax generates the predicted labels in the fully connected layer. To initi-
alize the weights, we use a normal distribution with zero 
mean: wi0 ¼ Nð0; 0:1Þ.

Results from Neural Machine Translation (NMT) prove that intermediate 
hidden states from RNN units can significantly improve the performance of 
the models (Bahdanau, Cho, and Bengio 2015; Luong, Pham, and Manning 
2015; Rocktäschel et al. 2015). Such approach has been applied in protein 
family classification (Lee and Nguyen 2016) and precursor miRNA identifica-
tion (Park et al. 2017). The attention mechanism (Bahdanau, Cho, and Bengio 
2015; Luong, Pham, and Manning 2015) creates a context vector ct from 
a weighted combination of intermediate hidden states ht. We use the global 
attention with general content-based score in (Luong, Pham, and Manning 
2015) to improve the base model.

Along with the three main modules described beforehand, two additional 
modules provide a user interface to the identification model: a command line 
interface (CLI) module and a web application implementation. The web user 
interface provides easy access and installation. It was built using Flask and 
React JS. A docker container packs all libraries and frameworks, along with the 
code, the user interfaces, and the trained neural network model. The container 
is publicly available at Docker Hub (https://hub.docker.com/r/lelugom/wgs_ 
classifier). In the repository, you will find instructions to start the container 
and easily access the model through the web interface. The code, the model, 
and a small test dataset are available in a GitHub repository (https://github. 
com/lelugom/wgs_classifier), along with instructions for installation and 
replication of results.

Results and Discussion

All the training and evaluation tests were performed using a computer with 
8GB of RAM, an Intel Core i7-7700HQ CPU, and a GPU NVidia GeForce 
GTX 1050 with 2GB of dedicated RAM. The CPU has 4 physical cores and 8 
threads through hyperthreading. Its base frequency is 2.8 GHz, while the Max 
Turbo frequency is 3.8 GHz. It also has a 6 MB cache with 64-byte cache line 
length. On the other hand, the GPU is part of the Pascal architecture. It has 640 
CUDA cores arranged in 5 streaming multiprocessors. Its clock runs at 
1354 MHz, with a boost of 1.3x. Its memory interface width is 128-bits.

Comparisons of tests in computational intelligence need statistical methods 
to ensure differences are statistically significant. We use the Wilcoxon signed 
rank test, which is a well-known nonparametric method. It is less affected by 
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outliers and can be adapted to multiple data structures. This method tests if 
two samples represent different populations. Thus, it let us know if means 
from two samples have a significant difference (Derrac et al. 2011; Larsen and 
Marx et al. 2012). We use 5% as the minimum level of significance (p-value) 
for the tests throughout this section.

WWhole-genomesequences of bacteria are currently accessible through 
publicly available databases of biological sequences. GenBank was the selected 
database to gather an annotated set of bacterial DNA sequences, as it is part of 
the International Nucleotide Sequence Database Collaboration and contains 
WWhole-GenomeSequence entries (Benson et al. 2012). First, we obtained 
a recordset for WGS projects – in CSV format – from the NCBI website 
(https://www.ncbi.nlm.nih.gov/Traces/wgs/?page=2&view=wgs&search= 
BCT). Then, a python module performs text processing in the CSV file to 
extract the WGS project code, which is used to get the project URL. Project 
codes starting with NZ do not have a valid HTML page, thus, they are 
ignored. The python module downloads the project HTML page from the 
URL and extracts the FTP address and the filename for the compressed 
FASTA file. Once the FTP address is extracted, the module proceeds with 
the download of the compressed FASTA file to the local disk, under a directory 
with the Taxonomic ID of the species.

For the base recurrent neural network model, we use a threshold of one 
thousand sequences per species (14 species, see https://hub.docker.com/r/ 
lelugom/wgs_classifier). After randomly dividing the sequences into training 
(60%), testing (20%), and validation (20%) sets, the softmax ccross- 
entropyloss is minimized during the training process (Section 2). Learning 
rate was set to 1e-3 and batch size to 128. The Adam optimizer (Kingma and 
Ba 2014) minimized the loss function, with default parameters β1 ¼ 0:9, 
β2 ¼ 0:999, and є=1e� 08. Validation set results (Figure 2) include an accuracy 
of 99.0% at 950 steps. Precision was 99.8%, recall 99.93%, and F-score 99.86% 
at the same step. After finishing training at 3600 steps, results over the test set 
yielded an accuracy of 99.13%, precision 99.97%, recall 99.91%, and F-score 
99.93%. No over-fitting was observed as can be seen when comparing training 
and validation loss curves. After analyzing the results of the training process 
with the validation set, we can observe that losses decrease the first 2800 steps 
and no further improvement is observed after 3600 steps. Thus, early stopping 
(Graves 2012) gives us a range between 2800 and 3600 steps for training the 
neural network. Our subsequent experiments used a step count in that range.

After performing 10-fold cross-validation, the base model generated an 
accuracy of 0.98512 � 0.00798 and f-score of 0.98513 � 0.00799 (14 
species). Increasing the species coverage made the base model accuracy drop 
to 0.76981 � 0.08550 – with a minimum of one hundred sequences per 
species (111 species, see https://hub.docker.com/r/lelugom/wgs_classifier). 
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The threshold of one hundred sequences per species (111 species) covers the 
critical, high, and medium priority groups of the WHO priority pathogens list 
(Tacconelli and Magrini 2017), although they cover only 4 out of 7 species in 
the Enterobacteriaceae family. Hence, we iterated over the base model, testing 
architecture and hyperparameter modifications to improve the recurrent 
neural network. We tested the addition of a dense module (Park et al. 2017), 
the addition of the attention mechanism (Bahdanau, Cho, and Bengio 2015; 
Luong, Pham, and Manning 2015), a combination of the attention mechanism 
and a dense module, weighted loss for the imbalance in the dataset (Katevas 
et al. 2017), Glorot uniform initialization (Glorot and Bengio 2010), dropout 
wrappers (Gal and Ghahramani 2016), a Proximal Adagrad optimizer 

Figure 1. Training curves for the bidirectional recurrent neural network, considering the first one 
thousand iterations.
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(Angermueller et al. 2016), layer size changes, and various learning rates. 
Overall, the attention mechanism generated the major improvement.

Our final model has a bidirectional GRU layer with 128 units, a global 
attention mechanism (Bahdanau, Cho, and Bengio 2015) – with a dense layer 
to concatenate the context vector to the final output state – and a dense layer for 
classification. Dropout of 0.5 provides regularization for the two dense layers. 
Also, the Adam optimizer with a learning rate of 1e-3 minimizes the softmax 
ccross-entropyloss function. A comparison between the base model and the final 
model for different thresholds of minimum sequences appear in Table 1. All 
results are statistically significant. We observed a substantial improvement 
against the base model in all the scenarios, although the lower the threshold, 
the higher the value of the final model improvement. With a threshold of one 
hundred sequences per species, the model achieves the broadest coverage. 
A confusion matrix with this threshold (Figure 3) let us know the main limita-
tion of the model: It is clear from the matrix diagonal how the model struggles to 
classify certain species, impacting the overall accuracy of the model.

Table 1. Variation of accuracy against minimum sequences per species. 
Comparison between the base model and the final model.

Seqs. Base model Final model p-value

1000 0.9775 � 0.0159 0.9945 � 0.0028 0.005
500 0.9425 � 0.0449 0.9871 � 0.0126 0.027
250 0.8660 � 0.0314 0.9503 � 0.0046 0.027
100 0.7698 � 0.0855 0.8903 � 0.0041 0.006

Figure 2. Architecture of the bacterial identification system. Starting from the encoding of the 
sequence using a k-mers based representation, the model then pass the sequence through a BRNN 
with an attention mechanism. A final softmax layer finds the label to identify the bacterial species.
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Finally, we select alternative methods for results comparison. Naive Bayes 
(NB) and Multilayer Perceptron (MLP) (Alpaydin 2014) are two classification 
models which provide a reference to compare our identification system results. 
It is important to note that we cannot use a matrix representation (3x1024) for 
Naive Bayes and MLP models. Instead, we encode data with the concatenated 
representation (1x1344) that holds k-mers of k ¼ f3; 4; 5g. We performed 10- 
fold cross-validation. The dataset has a threshold of at least o100 sequences per 
species (111 species, see https://hub.docker.com/r/lelugom/wgs_classifier). 
Results show that our classification model outperforms other machine learn-
ing methods (Figure 4, Table 2). There is a considerable increase in 

Figure 3. Confusion matrix for the final classification model covering 111 species. The accuracy of 
the model is 89.632%.

Figure 4. Validation of results comparing Naive Bayes (NB), Multilayer Perceptron (MLP), and our 
identification model.
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performance when taking into account all the metrics used for model char-
acterization. All differences were statistically significant (p � 0.5) against 
validation methods. Other recurrent neural models provided additional means 
for validating results. Cross-validation tests with a model based on LSTM units 
and a unidirectional architecture helped us compare the model performance 
against common recurrent architectures. For the unidirectional architectures, 
we doubled the number of units to perform a fair comparison to our bidirec-
tional identification model. Results in Table 2 show equivalent outputs for the 
alternative recurrent neural network configurations.

Conclusions

Although a number of methods are available for the essential task of bacteria 
identification – including mass spectrometry, pairwise sequence comparison, 
and microscopic morphology – recurrent neural networks represent an auto-
matic classification method which does not require any manual feature extrac-
tion. They are easily updated through the retraining of the model. Our 
identification system exploits the vast amounts of genomic information avail-
able in GenBank to infer the species of a given bacterial whole-genome 
sequence. GenBank provides the samples to train and test the prediction 
capabilities of our neural network architecture. The model has the potential 
to benefit diverse areas, such as pathology, microbiology, experimental biol-
ogy, food and water industries, and evolutionary studies.

A distributed representation provides an excellent encoding for the bacter-
ial genomic information in a low dimensional space. This is an important 

Table 2. Comparison between Naive Bayes (NB), 
Multilayer Perceptron (MLP), alternative RNN configura-
tions, and our identification model (BRNN GRU).

Model Metric Value

NB Accuracy 0.75313 � 0.01675
Precision 0.83775 � 0.00461
Recall 0.69128 � 0.02774
F-score 0.75719 � 0.01662

MLP Accuracy 0.83713 � 0.00829
Precision 0.79688 � 0.01054
Recall 0.80402 � 0.01308
F-score 0.80040 � 0.01055

RNN GRU Accuracy 0.88896 � 0.00367
Precision 0.87889 � 0.00293
Recall 0.87354 � 0.00491
F-score 0.87620 � 0.00354

BRNN LSTM Accuracy 0.89690 � 0.00153
Precision 0.89123 � 0.00594
Recall 0.88329 � 0.00192
F-score 0.88724 � 0.00334

BRNN GRU Accuracy 0.89107 � 0.00392
Precision 0.88068 � 0.00515
Recall 0.87767 � 0.00486
F-score 0.87917 � 0.00436
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aspect considering the high dimensionality and sparsity of one-hot encoding 
sequence representations. The combination of two or more k-mer lengths 
gives context to the distributed representation. Context takes advantage of 
positional information, a crucial aspect in biological sequences. From applica-
tions in Natural Language Processing, the additional context proved to be 
useful for our identification model efficiency. On top of that, the distributed 
representation does not require the assumption that nodes in the FASTA files 
are ordered.

Our bidirectional GRU model has a bidirectional GRU layer with 128 units, 
a global attention mechanism (Bahdanau, Cho, and Bengio 2015; Luong, 
Pham, and Manning 2015) – with a dense layer to concatenate the context 
vector to the final output state – and a dense layer for classification. The model 
generates an accuracy of 0.89107 � 0.00392 for 111 spices. Also, it out-
performed other machine learning methods in the classification of bacterial 
wwhole-genomesequences. Results show better numbers in all the metrics 
used to characterize the model (accuracy, precision, recall, and balanced 
F-score). Alternative recurrent neural network architectures – standard 
GRUs, bidirectional LSTMs – provided equivalent results, with no statistically 
significant differences.

Future work As more curated samples of wwhole-genomesequences are 
available at GenBank, the classification system can improve in two aspects. 
First, the number of species with at least o100 sequences will increase, growing 
the coverage of the recurrent neural network. Secondly, the accuracy of the 
system has the potential to improve because most of the species that the model 
struggles to identify have low sequence counts. Also, proper data augmenta-
tion techniques could increase the number of sequences for training. Those 
augmentation techniques should avoid direct modifications of the nucleotides 
in the wwhole-genomesequences. Nucleotide changes insert mutations in the 
sequences. Mutations in core parts of the sequence express alterations in vital 
functions, which generate a sequence that cannot represent a living organism.
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