
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uaai20

Applied Artificial Intelligence
An International Journal

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uaai20

A Recurrent Neural Network approach for whole
genome bacteria identification

Luis Lugo & Emiliano Barreto- Hernández

To cite this article: Luis Lugo & Emiliano Barreto- Hernández (2021) A Recurrent Neural
Network approach for whole genome bacteria identification, Applied Artificial Intelligence,
35:9, 642-656, DOI: 10.1080/08839514.2021.1922842

To link to this article: https://doi.org/10.1080/08839514.2021.1922842

Published online: 20 May 2021.

Submit your article to this journal

Article views: 1074

View related articles

View Crossmark data

Citing articles: 1 View citing articles

https://www.tandfonline.com/action/journalInformation?journalCode=uaai20
https://www.tandfonline.com/loi/uaai20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/08839514.2021.1922842
https://doi.org/10.1080/08839514.2021.1922842
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uaai20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1922842
https://www.tandfonline.com/doi/mlt/10.1080/08839514.2021.1922842
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1922842&domain=pdf&date_stamp=2021-05-20
http://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1922842&domain=pdf&date_stamp=2021-05-20
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1922842#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/08839514.2021.1922842#tabModule

A Recurrent Neural Network approach for whole genome
bacteria identification
Luis Lugo and Emiliano Barreto- Hernández

Instituto de Biotecnología, Universidad Nacional de Colombia, Bogotá, Colombia

ABSTRACT
The identification of bacteria plays an essential role in multiple
areas of research. Those areas include experimental biology,
food and water industries, pathology, microbiology, and evolu-
tionary studies. Although there exist methodologies for identi-
fication, a transition to a whole-genome sequence-based
taxonomy is already undergoing. Next-Generation Sequencing
helps the transition by producing DNA sequence data effi-
ciently. However, the rate of DNA sequence data generation
and the high dimensionality of such data need faster computer
methodologies. Machine learning, an area of artificial intelli-
gence, has the ability to analyze high dimensional data in
a systematic, fast, and efficient way. Therefore, we propose
a sequential deep learning model for bacteria identification.
The proposed neural network exploits the vast amounts of
information generated by Next-Generation Sequencing, in
order to extract an identification model for whole-genome bac-
teria sequences. After validating the identification model, the
bidirectional recurrent neural network outperformed other clas-
sification approaches.

KEYWORDS
Bacteria identification; whole
genome sequence; recurrent
neural networks

Introduction

The identification of bacteria plays an important role in multiple areas of
research. Experimental research in biology benefits from the elegant mechan-
isms of gene activity control in bacteria, the rapid rate at which they grow, and
the powerful genetics they have (Lodish et al. 2004). Pathology and micro-
biology also benefit from bacteria taxonomy as it serves as the basis for
understanding certain diseases (Mohamad et al. 2014). Moreover, fast identi-
fication of bacteria is critical to ensure the quality of water and food products
(Singhal et al. 2015). It is also important from the evolutionary standpoint
because it allows the documentation of changes in genes and proteins (Lodish
et al. 2004).

There exist a number of criteria for the classification of bacteria and
archaea, including morphology, genome size, lifestyle, relevance to human

CONTACT Luis Lugo lelugom@unal.edu.co Instituto de Biotecnología, Universidad Nacional de Colombia,
Bogotá, Colombia
This article has been republished with minor change. This change do not impact on the academic content of the
article.

APPLIED ARTIFICIAL INTELLIGENCE
2021, VOL. 35, NO. 9, 642–656
https://doi.org/10.1080/08839514.2021.1922842

© 2021 Taylor & Francis

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1922842&domain=pdf&date_stamp=2022-03-23

disease, molecular phylogeny using rRNA, and genomic sequence analysis
(Mohamad et al. 2014; Pevsner 2015). Methods for bacteria identification
include mass spectrometry (Singhal et al. 2015), wwhole-genomesequencing
for clinical samples (Hasman et al. 2013), genome-wide Average Nucleotide
Identity (Garrity and Kraft 2016; Varghese et al. 2015), pattern recognition in
image processing (Mohamad et al. 2014), and deep neural network architec-
tures (Bosco and Di Gangi 2016; Rizzo et al. 2015).

Moreover, as advances in NNext-GenerationSequencing (NGS) generate
high dimensional biological data at a faster rate (Schmidt and Hildebrandt
2017), and more curated databases of biological sequences are publicly avail-
able, there exists the need to process considerable amounts of high dimen-
sional data in a systematic and efficient way. The unprecedented amount of
genomic data generated by NGS platforms increases the demand for large-
scale data analysis (Pais et al. 2014). Extracting useful information from those
large datasets is challenging. Manual processing of such volumes of data is
slow, expensive, and impractical. It is also error prone and highly subjective
(Fayyad, Piatetsky-Shapiro, and Smyth 1996). Often, traditional software tools
cannot process large datasets or efficient processing algorithms cannot be
developed beforehand (Dahl 2015; Tan et al. 2018). In fact, available software
systems and algorithms for biological sequence processing should be
improved. Computational tasks pose some of the most significant challenges
in processing efficiency regarding WWhole-GenomeSequencing (WGS) pro-
jects (Scholz, Lo, and Chain 2012).

Deep neural networks provide a set of methods to analyze such high
dimensional data efficiently (Murphy 2012), generating an explosion of deep
learning applications for research in bioinformatics (Min, Lee, and Yoon
2016). Computational biology is another area that is taking the benefits of
deep neural network approaches to leverage very large datasets of high dimen-
sional data. Biological datasets are explored to extract hidden structures within
them and to make accurate predictions. Applications of deep neural networks
are found in regulatory genomics, drug discovery, cellular imaging, medical
imaging, genomic data mining, biomedical signal processing, and sequence
classification (Angermueller et al. 2016; Bosco and Di Gangi 2016; Min, Lee,
and Yoon 2016; Nguyen et al. 2016; Rizzo et al. 2015; Webb 2018).

(Rizzo et al. 2015) proposed a machine learning architecture for DNA
sequence classification. Its implementation uses Theano, a python library for
artificial intelligence models. The system proposed is a convolutional neural
network for processing RNA sequences. The representation of RNA sequences
is performed using k-mers occurrences. The goal is to take advantage of
convolutional neural networks ability to extract hidden features. Thus, the
model can extract features represented by k-mers from input sequences. As far
as testing is concerned (Rizzo et al. 2015) chose 16S rRNA sequences. They
compare the proposed architecture with existing machine learning models,

APPLIED ARTIFICIAL INTELLIGENCE 643

and a previous model developed by the team. The previous model by the same
team is a classifier based on a General Regression Neural Network (GRNN)
model. The research concludes that CNN models get very good results at the
different taxonomic levels. CNNs outperformed existing machine learning
classifiers when processing full-length 16S rRNA sequences or 500bp frag-
ments. Nonetheless, results obtained by the CNN are very similar to those
obtained by the GRNN model. This happens when the models are processing
full-length 16S rRNA sequences. When the models process 500bp 16S rRNA
sequence fragments, the CNN architecture manages to outperform all the
other models. That is quite important because in metagenomics, researchers
usually have access only to fragments of DNA sequences.

The work in Bosco and Di Gangi (2016) compared two different types of
deep learning models for automatic classification of bacteria species.
Classification is performed without a previous feature extraction process.
They propose convolutional neural networks and recurrent neural networks.
For recurrent neural networks, authors use the long-short-term memory
(LTSM) model. For testing purposes, the deep learning architecture was fed
with a dataset encoded according to the IUPAC nucleotide representation.
The dataset is downloaded from the Ribosomal Database Project (RDP) (Cole
et al. 2013). The dataset uses the 16S ribosomal RNA to identify five ordered
taxonomic ranks (Phylum, Class, Order, Family, and Genus). One architecture
implements a separate neural network for each taxonomic rank, while the
other architecture uses multitask learning by adding separate layers for each
taxonomic rank on the top of the processing layers. Their research allowed to
conclude that, overall, LSTMs have a better classification output than CNNs.
Another conclusion states that multitask learning improves the performance
of LSTM architectures, but it harms CNN models (Bosco and Di Gangi 2016).

Our main contribution is the application of deep neural networks to
improve existing DNA sequence analysis tools for WWhole-
GenomeSequence classification of bacteria. An improved identification system
has the potential to help the ongoing transition from 16s ribosomal RNA
taxonomy to a whole genome-based bacteria taxonomy (Garrity and Kraft
2016). Also, it takes advantage of the increasing amount of data generated
from NGS technologies. This is particularly important because other methods
become computationally more expensive as more data is available. But deep
learning methods are data-intensive applications that benefit from an increas-
ing amount of data available. Therefore, we propose a sequential deep
learning architecture – a recurrent neural network – for bacteria identification
(Figure 1), using NGS data.

644 L. LUGO AND E. BARRETO-HERNÁNDEZ

Methods

The identification of bacteria using their whole-genome sequences is a part of
a broader set of tasks in machine learning: sequence labeling (Graves 2012). In
sequence labeling, an input sequence of data points is transcribed with
a discrete set of output labels. It is common to have sequence labeling tasks
in time series data, where each data point in the input sequence is a time step.
Nonetheless, the same approach works for non-temporal tasks such as protein
secondary structure prediction and DNA sequence classification (Graves
2012).

Sequence classification is the most restrictive case of sequence labeling
applications. The input sequence should be matched to a label sequence of
unitary length. But this case has an advantage over the other cases because the
algorithm can process the whole sequence before generating the label. This
kind of classification is what we perform with the bacterial wwhole-
genomesequences. Sequential models not only have the advantage of robust-
ness against distortions and shifting in the input sequence, but also can dis-
cover what context information is essential for a correct output, as they can
acquire a better knowledge of the overall sequence structure (Graves 2012).

The classical error rate in pattern classification – the classification error
rate – enables the computation of a loss function for the models. The error rate
is the relationship between correct input-target outputs and the testing set size
(Graves 2012). For neural network outputs in classification systems with more
than two classes, a softmax function provides normalized output activations
that represent the class probabilities (Graves 2012). True class probabilities are
obtained by representing the true labels with a 1-of-K coding scheme (Cho
et al. 2014), a binary vector with one-hot encoding (Section 2.2). The cross
entropy loss function provides the target function that we minimize to train
the network. By doing so, we minimize the classification error rate.

Considering metrics for model evaluation, accuracy alone could be a poor
estimator of neural network performance in some applications. Accuracy
defines the relationship between the correct outputs and the total number of
outputs. A more robust approach include the calculation of precision and
recall. Precision defines the fraction of detections reported by the network that
are correct. On the other hand, recall defines the fraction of true events in the
testing set that were successfully detected by the network. A common sum-
marization of neural network performance combines precision p and recall r
into the balanced F-score (Goodfellow, Bengio, and Courville 2016; Rizzo et al.
2015). We use the four metrics to assess our model in section 3.

APPLIED ARTIFICIAL INTELLIGENCE 645

Recurrent Neural Networks

Sequences found in biology naturally fit the processing power of recurrent
neural networks (RNNs). That happens because of the temporal modeling
capabilities of RNNs. RNNs are inspired by the cyclical connection of the
neurons inside our brain. They store information from input sequences by
using iterative function loops. RNNs are an ideal architecture for sequence
labeling tasks because they store context information in a flexible manner. By
learning what to store and what to ignore, they accept input data in different
types and representations. Also, They can understand sequential patterns in
the presence of sequential noise (Graves 2012).

In some applications regarding sequence analysis, the current output
depends on both past inputs and future inputs. RNNs process input data in
one direction, thus, context information is available from one side of the
sequence. For instance, in time series data, context is available from the past
but there is no way data after the current point in time can alter the context.
Therefore, bidirectional RNNs were created to cope with those sequence
analysis requirements. In this kind of networks, we assemble two hidden
layers. One processes the sequence from the first input while the other
processes the sequence from the last input. The output layer is connected to
both backward and forward hidden layers and it only generates the output
after processing the whole sequence (Graves 2012; Lipton, Berkowitz, and
Elkan 2015).

Cells for the bidirectional layers include Long Short-Term Memory (LSTM)
and Gated Recurrent Units (GRUs). LSTMs are a redesign of RNNs around
a memory cell. The redesign improves their ability to store context informa-
tion on very long sequences. In fact, they solve complex long-time-lag tasks
that have never been solved by existing models (Graves 2012). GRUs are
motivated by LSTMs but are simpler to compute and implement. Also, they
can dynamically control the time scale and forgetting behavior of the units in
the network. Units comprise update and reset gates. Update gates select if the
hidden state will be updated with a new hidden state. On the other hand, reset
gates determine if the previous hidden state will be ignored (Martens and
Sutskever 2011; Cho et al. 2014; Goodfellow, Bengio, and Courville 2016).

Sequence Representation

Regarding sequence representations, a one-hot vector (Giang Nguyen et al.
2016) encoding converts genomic or protein sequences into a two-
dimensional numerical matrix. Another digital encoding, the k-mers repre-
sentation (Rizzo et al. 2015), generates a ffixed-lengthrepresentation using
occurrences of overlapping subsequences with a length of k. K-mers are
small DNA or protein sequences of k length. Based on the occurrence of

646 L. LUGO AND E. BARRETO-HERNÁNDEZ

those small sequences, the system computes and spectral representation of
input data. However, an important aspect of sequence labeling problems is the
use of context in the input sequence. Based on results from Natural Language
Processing (NLP), the seq2vec (Kimothi et al. 2016) extends the use of a single
k length in a k-mers representation, to create a distributed representation of
the sequences in a Euclidean space. The distributed representation, which
considers different k’s, has the potential to capture contextual information in
the original sequence. The dna2vec system (Ng 2017) uses a distributed
representation as well, considering k ¼ f3; 4; 5; 6; 7; 8g to generate vectors in
a 100-dimensional space. The cosine similarity of those vectors is correlated to
the Needleman–Wunsch similarity score.

The distributed representation provides contextual information and
helps to deal with high dimensionality in the sequences – an important
aspect considering that neural networks benefit from reasonably compact
continuous vector inputs (Graves 2012; Ng 2017). An additional benefit is
the invariance of the distributed representation to the order of the nodes in
the FASTA file. Although scaffolds are ordered in a FASTA file, contigs are
not necessarily ordered. Thus, we use a distributed representation for
encoding the bacterial whole-genome sequences. Our representation takes
inspiration from the multiple k-mers in dna2seq, but we consider a group
of three k’s, namely k ¼ f3; 4; 5g. When we added 6-mers to the sequence
representation, we found no improvement on the model performance,
thus, we consider only k ¼ f3; 4; 5g. Our set of k’s generates
a concatenated vector of only 1344 positions. Once the concatenated vector
of histograms is calculated, we proceed to the standardization of the data,
which is also known as scaling (Angermueller et al. 2016; Graves 2012).
After standardizing input vectors, histograms for each k-mer are padded
with zero to the length of the largest histogram and stacked into a matrix
of 3 × 1024.

Implementation

The whole system is implemented in Python 3.6. Three main modules are
considered for the Python code: download module, dataset module, and
identification system module.

The download module takes advantage of the urllib.request library to down-
load compressed FASTA files into the local disk, using the NCBI FTP end-
point. On the other hand, the dataset module loads FASTA files from local disk
and computes their distributed k-mers based representation.

The identification system module is implemented using the Tensorflow
deep learning framework – an advanced dataflow system that provides one
of the most efficient implementations for RNNs (Angermueller et al. 2016).
Based on the recurrent neural network architecture in (Liu et al. 2016) – that

APPLIED ARTIFICIAL INTELLIGENCE 647

processes protein sequences of up to 800 residues – our base classification
system has a bidirectional GRU hidden layer with 128 units. The forward and
backward final states are concatenated before applying a dropout of 0.5. The
model uses only a fully connected layer that takes the dropout result as input.
Softmax generates the predicted labels in the fully connected layer. To initi-
alize the weights, we use a normal distribution with zero
mean: wi0 ¼ Nð0; 0:1Þ.

Results from Neural Machine Translation (NMT) prove that intermediate
hidden states from RNN units can significantly improve the performance of
the models (Bahdanau, Cho, and Bengio 2015; Luong, Pham, and Manning
2015; Rocktäschel et al. 2015). Such approach has been applied in protein
family classification (Lee and Nguyen 2016) and precursor miRNA identifica-
tion (Park et al. 2017). The attention mechanism (Bahdanau, Cho, and Bengio
2015; Luong, Pham, and Manning 2015) creates a context vector ct from
a weighted combination of intermediate hidden states ht. We use the global
attention with general content-based score in (Luong, Pham, and Manning
2015) to improve the base model.

Along with the three main modules described beforehand, two additional
modules provide a user interface to the identification model: a command line
interface (CLI) module and a web application implementation. The web user
interface provides easy access and installation. It was built using Flask and
React JS. A docker container packs all libraries and frameworks, along with the
code, the user interfaces, and the trained neural network model. The container
is publicly available at Docker Hub (https://hub.docker.com/r/lelugom/wgs_
classifier). In the repository, you will find instructions to start the container
and easily access the model through the web interface. The code, the model,
and a small test dataset are available in a GitHub repository (https://github.
com/lelugom/wgs_classifier), along with instructions for installation and
replication of results.

Results and Discussion

All the training and evaluation tests were performed using a computer with
8GB of RAM, an Intel Core i7-7700HQ CPU, and a GPU NVidia GeForce
GTX 1050 with 2GB of dedicated RAM. The CPU has 4 physical cores and 8
threads through hyperthreading. Its base frequency is 2.8 GHz, while the Max
Turbo frequency is 3.8 GHz. It also has a 6 MB cache with 64-byte cache line
length. On the other hand, the GPU is part of the Pascal architecture. It has 640
CUDA cores arranged in 5 streaming multiprocessors. Its clock runs at
1354 MHz, with a boost of 1.3x. Its memory interface width is 128-bits.

Comparisons of tests in computational intelligence need statistical methods
to ensure differences are statistically significant. We use the Wilcoxon signed
rank test, which is a well-known nonparametric method. It is less affected by

648 L. LUGO AND E. BARRETO-HERNÁNDEZ

https://hub.docker.com/r/lelugom/wgs_classifier
https://hub.docker.com/r/lelugom/wgs_classifier
https://github.com/lelugom/wgs_classifier
https://github.com/lelugom/wgs_classifier

outliers and can be adapted to multiple data structures. This method tests if
two samples represent different populations. Thus, it let us know if means
from two samples have a significant difference (Derrac et al. 2011; Larsen and
Marx et al. 2012). We use 5% as the minimum level of significance (p-value)
for the tests throughout this section.

WWhole-genomesequences of bacteria are currently accessible through
publicly available databases of biological sequences. GenBank was the selected
database to gather an annotated set of bacterial DNA sequences, as it is part of
the International Nucleotide Sequence Database Collaboration and contains
WWhole-GenomeSequence entries (Benson et al. 2012). First, we obtained
a recordset for WGS projects – in CSV format – from the NCBI website
(https://www.ncbi.nlm.nih.gov/Traces/wgs/?page=2&view=wgs&search=
BCT). Then, a python module performs text processing in the CSV file to
extract the WGS project code, which is used to get the project URL. Project
codes starting with NZ do not have a valid HTML page, thus, they are
ignored. The python module downloads the project HTML page from the
URL and extracts the FTP address and the filename for the compressed
FASTA file. Once the FTP address is extracted, the module proceeds with
the download of the compressed FASTA file to the local disk, under a directory
with the Taxonomic ID of the species.

For the base recurrent neural network model, we use a threshold of one
thousand sequences per species (14 species, see https://hub.docker.com/r/
lelugom/wgs_classifier). After randomly dividing the sequences into training
(60%), testing (20%), and validation (20%) sets, the softmax ccross-
entropyloss is minimized during the training process (Section 2). Learning
rate was set to 1e-3 and batch size to 128. The Adam optimizer (Kingma and
Ba 2014) minimized the loss function, with default parameters β1 ¼ 0:9,
β2 ¼ 0:999, and є=1e� 08. Validation set results (Figure 2) include an accuracy
of 99.0% at 950 steps. Precision was 99.8%, recall 99.93%, and F-score 99.86%
at the same step. After finishing training at 3600 steps, results over the test set
yielded an accuracy of 99.13%, precision 99.97%, recall 99.91%, and F-score
99.93%. No over-fitting was observed as can be seen when comparing training
and validation loss curves. After analyzing the results of the training process
with the validation set, we can observe that losses decrease the first 2800 steps
and no further improvement is observed after 3600 steps. Thus, early stopping
(Graves 2012) gives us a range between 2800 and 3600 steps for training the
neural network. Our subsequent experiments used a step count in that range.

After performing 10-fold cross-validation, the base model generated an
accuracy of 0.98512 � 0.00798 and f-score of 0.98513 � 0.00799 (14
species). Increasing the species coverage made the base model accuracy drop
to 0.76981 � 0.08550 – with a minimum of one hundred sequences per
species (111 species, see https://hub.docker.com/r/lelugom/wgs_classifier).

APPLIED ARTIFICIAL INTELLIGENCE 649

https://www.ncbi.nlm.nih.gov/Traces/wgs/?page=2%26view=wgs%26search=BCT
https://www.ncbi.nlm.nih.gov/Traces/wgs/?page=2%26view=wgs%26search=BCT
https://hub.docker.com/r/lelugom/wgs_classifier
https://hub.docker.com/r/lelugom/wgs_classifier
https://hub.docker.com/r/lelugom/wgs_classifier

The threshold of one hundred sequences per species (111 species) covers the
critical, high, and medium priority groups of the WHO priority pathogens list
(Tacconelli and Magrini 2017), although they cover only 4 out of 7 species in
the Enterobacteriaceae family. Hence, we iterated over the base model, testing
architecture and hyperparameter modifications to improve the recurrent
neural network. We tested the addition of a dense module (Park et al. 2017),
the addition of the attention mechanism (Bahdanau, Cho, and Bengio 2015;
Luong, Pham, and Manning 2015), a combination of the attention mechanism
and a dense module, weighted loss for the imbalance in the dataset (Katevas
et al. 2017), Glorot uniform initialization (Glorot and Bengio 2010), dropout
wrappers (Gal and Ghahramani 2016), a Proximal Adagrad optimizer

Figure 1. Training curves for the bidirectional recurrent neural network, considering the first one
thousand iterations.

650 L. LUGO AND E. BARRETO-HERNÁNDEZ

(Angermueller et al. 2016), layer size changes, and various learning rates.
Overall, the attention mechanism generated the major improvement.

Our final model has a bidirectional GRU layer with 128 units, a global
attention mechanism (Bahdanau, Cho, and Bengio 2015) – with a dense layer
to concatenate the context vector to the final output state – and a dense layer for
classification. Dropout of 0.5 provides regularization for the two dense layers.
Also, the Adam optimizer with a learning rate of 1e-3 minimizes the softmax
ccross-entropyloss function. A comparison between the base model and the final
model for different thresholds of minimum sequences appear in Table 1. All
results are statistically significant. We observed a substantial improvement
against the base model in all the scenarios, although the lower the threshold,
the higher the value of the final model improvement. With a threshold of one
hundred sequences per species, the model achieves the broadest coverage.
A confusion matrix with this threshold (Figure 3) let us know the main limita-
tion of the model: It is clear from the matrix diagonal how the model struggles to
classify certain species, impacting the overall accuracy of the model.

Table 1. Variation of accuracy against minimum sequences per species.
Comparison between the base model and the final model.

Seqs. Base model Final model p-value

1000 0.9775 � 0.0159 0.9945 � 0.0028 0.005
500 0.9425 � 0.0449 0.9871 � 0.0126 0.027
250 0.8660 � 0.0314 0.9503 � 0.0046 0.027
100 0.7698 � 0.0855 0.8903 � 0.0041 0.006

Figure 2. Architecture of the bacterial identification system. Starting from the encoding of the
sequence using a k-mers based representation, the model then pass the sequence through a BRNN
with an attention mechanism. A final softmax layer finds the label to identify the bacterial species.

APPLIED ARTIFICIAL INTELLIGENCE 651

Finally, we select alternative methods for results comparison. Naive Bayes
(NB) and Multilayer Perceptron (MLP) (Alpaydin 2014) are two classification
models which provide a reference to compare our identification system results.
It is important to note that we cannot use a matrix representation (3x1024) for
Naive Bayes and MLP models. Instead, we encode data with the concatenated
representation (1x1344) that holds k-mers of k ¼ f3; 4; 5g. We performed 10-
fold cross-validation. The dataset has a threshold of at least o100 sequences per
species (111 species, see https://hub.docker.com/r/lelugom/wgs_classifier).
Results show that our classification model outperforms other machine learn-
ing methods (Figure 4, Table 2). There is a considerable increase in

Figure 3. Confusion matrix for the final classification model covering 111 species. The accuracy of
the model is 89.632%.

Figure 4. Validation of results comparing Naive Bayes (NB), Multilayer Perceptron (MLP), and our
identification model.

652 L. LUGO AND E. BARRETO-HERNÁNDEZ

https://hub.docker.com/r/lelugom/wgs_classifier

performance when taking into account all the metrics used for model char-
acterization. All differences were statistically significant (p � 0.5) against
validation methods. Other recurrent neural models provided additional means
for validating results. Cross-validation tests with a model based on LSTM units
and a unidirectional architecture helped us compare the model performance
against common recurrent architectures. For the unidirectional architectures,
we doubled the number of units to perform a fair comparison to our bidirec-
tional identification model. Results in Table 2 show equivalent outputs for the
alternative recurrent neural network configurations.

Conclusions

Although a number of methods are available for the essential task of bacteria
identification – including mass spectrometry, pairwise sequence comparison,
and microscopic morphology – recurrent neural networks represent an auto-
matic classification method which does not require any manual feature extrac-
tion. They are easily updated through the retraining of the model. Our
identification system exploits the vast amounts of genomic information avail-
able in GenBank to infer the species of a given bacterial whole-genome
sequence. GenBank provides the samples to train and test the prediction
capabilities of our neural network architecture. The model has the potential
to benefit diverse areas, such as pathology, microbiology, experimental biol-
ogy, food and water industries, and evolutionary studies.

A distributed representation provides an excellent encoding for the bacter-
ial genomic information in a low dimensional space. This is an important

Table 2. Comparison between Naive Bayes (NB),
Multilayer Perceptron (MLP), alternative RNN configura-
tions, and our identification model (BRNN GRU).

Model Metric Value

NB Accuracy 0.75313 � 0.01675
Precision 0.83775 � 0.00461
Recall 0.69128 � 0.02774
F-score 0.75719 � 0.01662

MLP Accuracy 0.83713 � 0.00829
Precision 0.79688 � 0.01054
Recall 0.80402 � 0.01308
F-score 0.80040 � 0.01055

RNN GRU Accuracy 0.88896 � 0.00367
Precision 0.87889 � 0.00293
Recall 0.87354 � 0.00491
F-score 0.87620 � 0.00354

BRNN LSTM Accuracy 0.89690 � 0.00153
Precision 0.89123 � 0.00594
Recall 0.88329 � 0.00192
F-score 0.88724 � 0.00334

BRNN GRU Accuracy 0.89107 � 0.00392
Precision 0.88068 � 0.00515
Recall 0.87767 � 0.00486
F-score 0.87917 � 0.00436

APPLIED ARTIFICIAL INTELLIGENCE 653

aspect considering the high dimensionality and sparsity of one-hot encoding
sequence representations. The combination of two or more k-mer lengths
gives context to the distributed representation. Context takes advantage of
positional information, a crucial aspect in biological sequences. From applica-
tions in Natural Language Processing, the additional context proved to be
useful for our identification model efficiency. On top of that, the distributed
representation does not require the assumption that nodes in the FASTA files
are ordered.

Our bidirectional GRU model has a bidirectional GRU layer with 128 units,
a global attention mechanism (Bahdanau, Cho, and Bengio 2015; Luong,
Pham, and Manning 2015) – with a dense layer to concatenate the context
vector to the final output state – and a dense layer for classification. The model
generates an accuracy of 0.89107 � 0.00392 for 111 spices. Also, it out-
performed other machine learning methods in the classification of bacterial
wwhole-genomesequences. Results show better numbers in all the metrics
used to characterize the model (accuracy, precision, recall, and balanced
F-score). Alternative recurrent neural network architectures – standard
GRUs, bidirectional LSTMs – provided equivalent results, with no statistically
significant differences.

Future work As more curated samples of wwhole-genomesequences are
available at GenBank, the classification system can improve in two aspects.
First, the number of species with at least o100 sequences will increase, growing
the coverage of the recurrent neural network. Secondly, the accuracy of the
system has the potential to improve because most of the species that the model
struggles to identify have low sequence counts. Also, proper data augmenta-
tion techniques could increase the number of sequences for training. Those
augmentation techniques should avoid direct modifications of the nucleotides
in the wwhole-genomesequences. Nucleotide changes insert mutations in the
sequences. Mutations in core parts of the sequence express alterations in vital
functions, which generate a sequence that cannot represent a living organism.

References

Alpaydin, E. 2014. Introduction to machine learning. Cambridge. MA, US: MIT press.
Angermueller, C., T. Pärnamaa, L. Parts, and O. Stegle. 2016. Deep learning for computational

biology. Molecular Systems Biology 12 (7):878. doi:10.15252/msb.20156651.
Bahdanau, D., K. Cho, and Y. Bengio. 2015. Neural machine translation by jointly learning to

align and translate. arXiv Preprint arXiv:1409.0473.
Benson, D. A., M. Cavanaugh, K. Clark, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and

E. W. Sayers. 2012. Genbank. Nucleic Acids Research 41 (D1):D36–D42. doi:10.1093/nar/
gks1195.

Bosco, G. L., and M. A. Di Gangi (2016). Deep learning architectures for DNA sequence
classification. International Workshop on Fuzzy Logic and Applications, pp. 162–71.
Springer.

654 L. LUGO AND E. BARRETO-HERNÁNDEZ

https://doi.org/10.15252/msb.20156651
https://doi.org/10.1093/nar/gks1195
https://doi.org/10.1093/nar/gks1195

Cho, K., B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. 2014. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. arXiv Preprint arXiv:1406.1078.

Cole, J. R., Q. Wang, J. A. Fish, B. Chai, D. M. McGarrell, Y. Sun, C. T. Brown, A. Porras-
Alfaro, C. R. Kuske, and J. M. Tiedje. 2013. Ribosomal database project: Data and tools for
high throughput rrna analysis. Nucleic Acids Research 42 (D1):D633–D642. doi:10.1093/nar/
gkt1244.

Dahl, G. E. (2015). Deep learning approaches to problems in speech recognition, computational
chemistry, and natural language text processing. Ph. D. thesis, University of Toronto.

Derrac, J., S. Garca, D. Molina, and F. Herrera. 2011. A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Computation 1 (1):3–18. doi:10.1016/j.
swevo.2011.02.002.

Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth. 1996. From data mining to knowledge
discovery in databases. AI Magazine 17 (3):37.

Gal, Y., and Z. Ghahramani. 2016. A theoretically grounded application of dropout in recurrent
neural networks. In Advances in neural information processing systems, 1019–27.

Garrity, G. M., and C. S. Kraft. 2016. A new genomics-driven taxonomy of bacteria and
archaea: Are we there yet? Journal of Clinical Microbiology 54 (8):1956–63. doi:10.1128/
JCM.00200-16.

Giang Nguyen, N., V. A. Tran, D. L. Ngo, D. Phan, F. R. Lumbanraja, M. R. Faisal, B. Abapihi,
M. Kubo, and K. Satou. 2016. DNA sequence classification by convolutional neural network.
Journal of Biomedical Science and Engineering 9 (9):280–86.

Glorot, X., and Y. Bengio (2010). Understanding the difficulty of training deep feedforward
neural networks. Proceedings of the thirteenth international conference on artificial intelli-
gence and statistics, Sardinia, Italy, pp. 249–56.

Goodfellow, I., Y. Bengio, and A. Courville. 2016. Deep Learning. Cambridge, MA, US: MIT
Press.

Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Ph. D. thesis.
Hasman, H., D. Saputra, T. Sicheritz-Ponten, O. Lund, C. A. Svendsen, N. Frimodt-Møller, and

F. M. Aarestrup. 2013. Rapid whole genome sequencing for the detection and characteriza-
tion of microorganisms directly from clinical samples. Journal of Clinical Microbiology 52
(1):139–46. doi:10.1128/JCM.02452-13.

Katevas, K., I. Leontiadis, M. Pielot, and J. Serrà. 2017. Practical processing of mobile sensor
data for continual deep learning predictions. arXiv Preprint arXiv:1705.06224.

Kimothi, D., A. Soni, P. Biyani, and J. M. Hogan. 2016. Distributed representations for
biological sequence analysis. arXiv Preprint arXiv:1608.05949.

Kingma, D. P., and J. Ba. 2014. Adam: A method for stochastic optimization. arXiv Preprint
arXiv:1412.6980.

Larsen, R. J., and M. L. Marx. 2012. An introduction to mathematical statistics and its applica-
tions. Fifth ed. Boston, MA, US: Pearson Education.

Lee, T. K., and T. Nguyen (2016). Protein family classification with neural networks. https://
cs224d.stanford.edu/reports/LeeNguyen.pdf .

Lipton, Z. C., J. Berkowitz, and C. Elkan. 2015. A critical review of recurrent neural networks
for sequence learning. arXiv Preprint arXiv:1506.00019.

Liu, H., Z. Wang, B. Shen, and F. E. Alsaadi. 2016. State estimation for discrete-time memris-
tive recurrent neural networks with stochastic time-delays. International Journal of General
Systems 45 (5):633–47. doi:10.1080/03081079.2015.1106731.

Lodish, H., A. Berk, S. L. Zipursky, P. Matsudaira, M. Krieger, and J. Darnell. 2004. Molecular
cell biology. Fifth ed. New York, US: W.H. Freeman and CO.

APPLIED ARTIFICIAL INTELLIGENCE 655

https://doi.org/10.1093/nar/gkt1244
https://doi.org/10.1093/nar/gkt1244
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1016/j.swevo.2011.02.002
https://doi.org/10.1128/JCM.00200-16
https://doi.org/10.1128/JCM.00200-16
https://doi.org/10.1128/JCM.02452-13
https://cs224d.stanford.edu/reports/LeeNguyen.pdf
https://cs224d.stanford.edu/reports/LeeNguyen.pdf
https://doi.org/10.1080/03081079.2015.1106731

Luong, M.-T., H. Pham, and C. D. Manning. 2015. Effective approaches to attention-based
neural machine translation. arXiv Preprint arXiv:1508.04025.

Martens, J., and I. Sutskever (2011). Learning recurrent neural networks with hessian-free
optimization. Proceedings of the 28th International Conference on Machine Learning
(ICML-11), Bellevue, WA, USA, pp. 1033–40. Citeseer.

Min, S., B. Lee, and S. Yoon. 2016. Deep learning in bioinformatics. arXiv Preprint
arXiv:1603.06430 abs/1603.06430.

Mohamad, N. A., N. A. Jusoh, Z. Z. Htike, and S. L. Win. 2014. Bacteria identification from
microscopic morphology: A survey. International Journal on Soft Computing, Artificial
Intelligence and Applications (IJSCAI) 3 (1):2319–1015.

Murphy, K. P. 2012. Machine learning: A probabilistic perspective. Cambridge, MA, US: The
MIT Press.

Ng, P. 2017. dna2vec: Consistent vector representations of variable-length k-mers. arXiv
Preprint arXiv:1701.06279.

Nguyen, N. G., V. A. Tran, D. L. Ngo, D. Phan, F. R. Lumbanraja, M. R. Faisal, B. Abapihi,
M. Kubo, and K. Satou. 2016. DNA sequence classification by convolutional neural network.
Journal of Biomedical Science and Engineering 9 (5):280. doi:10.4236/jbise.2016.95021.

Pais, F. S.-M., P. De Cássia Ruy, G. Oliveira, and R. S. Coimbra. 2014. Assessing the efficiency of
multiple sequence alignment programs. Algorithms for Molecular Biology 9 (1):4.
doi:10.1186/1748-7188-9-4.

Park, S., S. Min, H.-S. Choi, and S. Yoon. 2017. Deep recurrent neural network-based
identification of precursor microRNAs. In Advances in neural information processing sys-
tems, Long Beach, CA, USA, pp. 2895–904.

Pevsner, J. 2015. Bioinformatics and functional genomics. Hoboken, NJ, USA: John Wiley &
Sons.

Rizzo, R., A. Fiannaca, M. La Rosa, and A. Urso (2015). A deep learning approach to DNA
sequence classification. International Meeting on Computational Intelligence Methods for
Bioinformatics and Biostatistics, pp. 129–40. Springer.

Rocktäschel, T., E. Grefenstette, K. M. Hermann, T. Kočiskỳ, and P. Blunsom. 2015. Reasoning
about entailment with neural attention. arXiv Preprint arXiv:1509.06664.

Schmidt, B., and A. Hildebrandt (2017). Next-generation sequencing: Big data meets high
performance computing. Drug Discovery Today.

Scholz, M. B., -C.-C. Lo, and P. S. Chain. 2012. Next generation sequencing and bioinformatic
bottlenecks: The current state of metagenomic data analysis. Current Opinion in
Biotechnology 23 (1):9–15. doi:10.1016/j.copbio.2011.11.013.

Singhal, N., M. Kumar, P. K. Kanaujia, and J. S. Virdi. 2015. [maldi-tof mass spectrometry: An
emerging technology for microbial identification and diagnosis]. Frontiers in Microbiology 6.
doi: 10.3389/fmicb.2015.00791.

Tacconelli, E., and N. Magrini (2017). Global priority list of antibiotic-resistant bacteria to
guide research, discovery, and development of new antibiotics. http://www.who.int/medi
cines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf .

Tan, P.-N., M. Steinbach, A. Karpatne, and V. Kumar. 2018. Introduction to Data Mining.
Second ed. London,UK: Pearson Education.

Varghese, N. J., S. Mukherjee, N. Ivanova, K. T. Konstantinidis, K. Mavrommatis,
N. C. Kyrpides, and A. Pati. 2015. Microbial species delineation using whole genome
sequences. Nucleic Acids Research 43 (14):6761–71. doi:10.1093/nar/gkv657.

Webb, S. 2018. Deep learning for biology. Nature Technology Features 554:555–57.

656 L. LUGO AND E. BARRETO-HERNÁNDEZ

https://doi.org/10.4236/jbise.2016.95021
https://doi.org/10.1186/1748-7188-9-4
https://doi.org/10.1016/j.copbio.2011.11.013
https://doi.org/10.3389/fmicb.2015.00791
http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
https://doi.org/10.1093/nar/gkv657

	Abstract
	Introduction
	Methods
	Recurrent Neural Networks
	Sequence Representation
	Implementation

	Results and Discussion
	Conclusions
	References

