
____________________________________________________________________________________________

*Corresponding author: Email: yu-v-k@yandex.ru;

Physical Review & Research International
4(1): 9-29, 2014

SCIENCEDOMAIN international
www.sciencedomain.org

Ice-Shelf Resonance Deflections Modelled with
a 2D Elastic Centre-Line Model

Y. V. Konovalov1*

1Department of Mathematics, National Research Nuclear University “MEPhI”, Kashirskoe
shosse, 31, 115409, Moscow, Russian Federation.

Author’s contribution

The only author performed the whole research work. Author YVK wrote the first draft of the
paper. Author YVK read and approved the final manuscript.

Received 16th April 2013
Accepted 12th July 2013

Published 7th October 2013
___________________________________________________________________

ABSTRACT

Ice-shelf flexure modelling was performed using a 2D finite-difference elastic model, which
takes into account sub-ice-shelf seawater flux. The sub-ice seawater flux was described by
the continuity equation linked with the linear Euler equation. In the model ice shelf flexures
result from variations in the incoming (outgoing) sea water flux, which flows into (out of) the
sub-ice-shelf channel. The numerical experiments were carried out for the centre line,
which passes from the summit to the glacier terminus along one of the fastest ice-stream at
the Academy of Sciences Ice Cap. The profile includes a part of the adjacent ice-shelf. The
numerical experiments were carried out for harmonic incoming seawater fluxes and the ice-
shelf flexures were obtained for a wide spectrum of the seawater flux frequencies, ranging
from tidal periods down to periods of a few tens of seconds (0.001..0.06 Hz). The solutions
obtained by the model are in agreement (in amplitude of the flexures) with the ones
obtained by the model of Holdsworth and Glynn (1978). The amplitudes of modelled ice-
shelf deflections reach a maxima and it's in concordance with previous investigations of the
impact of ocean waves on Antarctic ice shelves [1]. The explanation of the effect is found in
the existence of a resonance at these high frequencies.

Keywords: Ice shelf; ocean waves; resonance deflections; sub-ice-shelf seawater; 2D elastic
model.
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1. INTRODUCTION

Tides and ocean swells produce ice shelf bends and, thus, they can initiate break-up of sea-
ice in the marginal zone [2-7] and also they can lead to ice-shelf rift propagation. Strong
correlations between rift propagation rate and ocean swells impact has however, yet to be
revealed [8], and it is not clear to what degree rift propagation can potentially be triggered by
tides and ocean swells. Nevertheless, the impact of tides and ocean swells is the part of the
total force that produces sea ice calving processes in ice shelves. Nevertheless, the impacts
of tides and of ocean swells are the parts of the total force [8] that produces sea-ice calving
processes in ice shelves [9]. Thus, the understanding of vibrating processes in ice shelves is
important from the point of view of investigations of ice sheet-ocean interactions and of sea
level changes due to alterations in the rate of sea-ice calving.

The descriptions of ice-shelf bends and of ice-shelf vibrations were developed in [2,3,6,7,10]
using the approximation of thin plates. These models allow to simulate ice-shelf deflections
and to obtain bending stresses emerging due to the vibrating processes, and to assess
possible effects of tides and ocean swells impacts on the calving process. Further
development of elastic-beam models for description of ice-shelf flexures implies application
of visco-elastic rheological models. In particular, tidal flexures of ice-shelf were obtained
within linear visco-elastic Burgers model in [11].

Ice-stream response to ocean tides was described by full Stokes 2D finite-element
employing a non-linear visco-elastic Maxwell rheological model by Gudmundsson (2011).
This modelling work revealed that tidally induced ice-stream motion is strongly sensitive to
the parameters of the sliding law. In particular, a non-linear sliding law allows the explanation
of the ice stream response to ocean forcing at long-tidal periods (MSf) through a nonlinear
interaction between the main semi-diurnal tidal components [12].

A 2D finite-element flow-line model with an elastic rheology was developed by O. V.
Sergienko [1,13] and was used to estimate mechanical impact of high-freq tidal action on
stress regime of ice shelves. In this model seawater was considered as incompressible,
inviscid fluid and is described by a velocity potential.

Here the simulations of bends of ice shelves are performed by 2D finite-difference elastic
model. The numerical experiments were carried out for the centre line, which passes along
one of the four ice streams at the Academy of Sciences Ice Cap on the Komsomolets Island,
Severnaya Zemlya archipelago [14]. The sub-ice-shelf seawater flux is described by the two
equations: (1) the continuity equation and (2) the linear Euler equation. The main aim of this
work is to derive equations and corresponding boundary conditions describing the impact of
ocean wave action on ice shelves, and also to present a finite-difference model of the
vibrating motion within the glacier, ice shelf and sub-ice-shelf sea system. The
flexures/vibration of ice shelves are considered in the model as a response to alterations of
the incoming seawater flux. In turn, the alterations of seawater flux are caused by changes in
sea level. Ice shelf flexures were obtained by the model for a wide spectrum of frequencies
of the seawater flux fluctuations. The modelled ice shelf flexures are compared with the thin
plate flexures obtained by the Holdsworth & Glynn model (1978).
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2. THE 2D FINITE-DIFFERENCE ELASTIC MODEL

2.1 Field Equations

The 2D model is based on the well-known momentum equations that can be applied to a
vertical cross-section along a flow line (centre line) [15-18]:
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where  zx, is a rectangular coordinate system with the x axis along the central line and the
z axis pointing vertically upward; U , W are horizontal and vertical ice displacements,
respectively; ki is stress tensor;  xhb ,  xhs are ice bed and ice surface elevations,
respectively; L is the glacier length.

Sub-ice-shelf seawater flux produces variation in pressure (P ), and gives rise to deviations
from the hydrostatic pressure. The sub-ice seawater flux, which appears due to ice-shelf
deviations, are described by the continuity equation and by the linear Euler equation:
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where )(0 xd is the depth of the sub-ice-shelf channel, ),( txWb is the ice-shelf base

vertical deflection,  xv is the horizontal velocity of the sub-ice-shelf seawater flow.

2.2 Boundary Conditions

The boundary conditions are (a) stress free ice surface, (b) normal stress exerted by
seawater at the ice shelf terminus and at the ice-shelf base, (c) basal stress defined by
friction law at glacier bed, (d) zero values of horizontal displacement and of shear stress at
the ice sheet summit.

The general form of the friction law [12,19] is expressed as
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  iib
m
bfrkiki Knτ   1 , (3)

where frK is friction coefficient, m is the exponent in the friction law, 1m gives linear

friction law and 1m corresponds to non-linear friction law; b


is the base ice flow velocity;

 and n are tangential and normal to the bed vectors, respectively.

The base ice flow velocity b


and the friction coefficient frK are considered as given

parameters of the elastic model. In this manuscript the ice flow velocity b


and the friction

coefficient frK were taken from [20].

Boundary conditions for sub-ice-shelf water flow, which is described by Eq (2), are

(i) 0v and 0bW at 0x ;

(ii)  vxd
xt

Wb )(0






and )()( 0 tvtv  at Lx  ;

2.3 Discretization of the Model

The numerical solutions were obtained by a finite-difference method, which based on the
coordinate transformation   Hzhxzx s /,,   [21-28]. The coordinate transformation

transfigures a cross-section into the rectangle  10;0  Lx .

To provide stability of the numerical solution in the finite-difference method, the boundary
conditions have been included in the momentum equations (1) [20]. In particular, after the
coordinate transformation, the boundary conditions for the system of momentum equations
(1) at the upper glacier surface (free surface) can be written as
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(4)

where the index "1" indicates that corresponding terms are approximated in grid nodes that
located at ice surface and the index "2" corresponds to next sub-ice-surface grid layer, 
is vertical grid size.

The boundary conditions at the ice-shelf base differ from Eq (2) due to the hydrostatic
pressure, which acts to ice-shelf base, and are given by
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Where index " N " corresponds to grid layer located at the ice shelf base, P is the
deviation from the hydrostatic pressure in the sub-ice-shelf seawater.

The boundary conditions at the ice-shelf front after applying the finite differencing in the
horizontal direction can be written in the following form
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located at the ice-shelf front.

2.4 Equations for the Displacements

Constitutive relationships between stress tensor components and displacements correspond
to Hook's law [17]:
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Substitution of these relationships into Eq (1), Eq (3) - (6) gives final equations of the model.

3. RESULTS OF THE NUMERICAL EXPERIMENTS

The numerical experiments with ice-shelf bends were carried out for the harmonic flux of
inflowing/outflowing seawater and were applied to the centre line, which passes along the
one of the four fast flowing ice streams at the Academy of Sciences Ice Cap [14] (Fig. 1).
The C-C' profile [14] was continued into the ice-shelf profile using an idealized trapezoidal
geometry for ice-shelf [3]. The ice shelf length, together with sub-ice-shelf channel depth
)(0 xd , are considered as the model's parameters (Fig. 1).

It is assumed that incident ocean waves induce cyclical ice-shelf deflections that provide the
cyclical circulation in the flux of sub-ice-shelf seawater. Thus, the boundary condition for Eq
(2) can be formulated for the velocity of the incoming seawater flux:

  tvtLv sin, 0 , (8)

where  is the frequency of the incident ocean wave and 0v is and the amplitude of the
seawater flux velocity.

3.1 Tidal Waves

Ice-shelf response to the incoming seawater flux depends on the amplitude of the seawater
flux velocity 0v , i.e. the response depends on the overall seawater flux incoming to sub-ice-
shelf channel. For a given model's parameters including x-distribution of ice-shelf thickness,
ice-shelf length ( shL ), Young's modulus and Poisson's ratio, the amplitude of seawater flux
velocity should be chosen properly in order to provide the agreement between the amplitude
of ice-shelf terminus deflection and the amplitude of incident ocean wave. Table 1 shows the
ice-shelf length ( shL ) versus the amplitude of seawater flux velocity, at which the amplitude
of ice-shelf terminus deflection achieves 1 m.
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Fig. 1. The part of the C-C' profile, which passes in one of the four ice-streams in the
Academy of Sciences Ice Cap (along the flow line) [14]. The C-C' also means one of

the four flow lines in the Academy of Sciences Ice Cap (Figure 10 of Dowdeswell et al.,
2002) The numerical experiments were carried out for the full C-C' profile, which

extends from the ice sheet summit to the margin (Figure 8 of Dowdeswell et al., 2002).
The C-C' profile was continuously converted into the ice-shelf, which has trapezoidal
shape. The linear x-distributions of the depth of sub-ice-shelf channel and the linear
x-distribution perturbed by a sinusoidal function, were considered in the numerical

experiments. The ice shelf thickness is about 76.2 m at the distance where the
grounding line located

Table 1. Ice-shelf lengths versus amplitude of seawater flux velocity. GPaE 9 ,
33.0 [29]

shL (km) 2 3 4 5 6 7 8

0v (mm/s) 3.3 4.5 5.6 6.5 7.5 8.4 9.5

Fig. 2 shows vertical ice-shelf deflections obtained by the developed model (Fig. 2a) and by
the model of Holdsworth & Glynn (1978) (Fig. 2b) for incident tidal ocean wave. The models
reveal a visible distinction in the results obtained for the tidal wave and for different ice shelf
lengths. The difference is observed in the positions of the maxima in the deflection profiles.
The deflection profile maximum in the full model shifts from the grounding line to the ice-
shelf terminus (Fig. 2a), but the maximum becomes unchanged in the profiles obtained by
the elastic beam model (Fig. 2b), which is based on the momentum equation of a thin plate
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[3] and which is in agreement with the exact solution based on the same 1D momentum
equation for an elastic beam of a constant thickness [6,10].

Linear relationships of the 0d on the distance x in Eq (2) were considered in the model, i.e.

the 0d linearly increases from a value 1d at the grounding line to a value 2d at the ice-shelf

front, that is   GlSh LxLddxd  /)( 10 , where GlL is glacier length. In addition to the

linear distributions the sinusoidal distribution of the 0d was considered, that is

      ShGlGlSh LLxdLxLddxd /2cos1/)( 310   . Practically, this distribution
defines the bump, which is located at the sea bottom in the middle of the sub-ice-shelf
cannel (Fig. 1).
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Fig. 2. (a) The maximal ice-shelf deflections obtained by the full elastic model at
different values of ice-shelf length: curves 1..8 corresponds to kmLSh 8..2 ,
respectively. (b) The maximal ice-shelf deflections obtained by the model of
Holdsworth & Glynn at the same values of ice-shelf length (and for the same

trapezoidal geometries), i.e. curves 1..8 correspond to kmLSh 8..2 , respectively.
The modeled deflections are considered as deflections from the time-averaged flexure
profile in the harmonic history of the forcing. Young's modulus GPaE 9 , Poisson's

ratio 33.0 , period of the vibrations hT 12 (semi- diurnal periodicity), velocity
amplitude of seawater flux is in the Table 1 and incoming wave amplitude in the model

of Holdsworth & Glynn was taken equal to m1 .

Fig. 3 shows that the increase in the coefficient of the linear distribution ( ShLd / ) leads to
the enhancement of the ice-shelf deflections. In fact, Fig. 3 shows the overall incoming water
flux impact to the amplitude of the deflections in the model, in the case when the amplitude
of the flux velocity ( 0v ) in the incoming wave is considered as a given value. In this case the

overall incoming water flux is defined by the value of 2d (Fig. 3) and 1.5-times growing of

2d means the same increase of the incoming water flux. In other words, the enhancement of

the incoming water flux, which is defined as 20 dvw , will the same as the increase of 2d .

The numerical experiment carried out with different values of the coefficient ShLd / (Fig. 3)
have revealed approximately the same-times growing of the deflection amplitude. That is the
deflection amplitude growing in the agreement with the enhancement of the incoming water
flux.
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Fig. 3. Ice-shelf deflection profiles obtained by the full elastic model at different sub-
ice-shelf channel depth profiles (Fig. 1). The curves 1-5 have been obtained at the

linear depth distributions, i.e. )(0 xd linearly changes from md 301  to a value 2d : 1 -

md 602  ; 2 - md 702  ; 3 - md 802  ; 4 - md 902  . The curve 5 has been obtained
at the sinusoidally perturbed sea bottom (Fig. 1). Young's modulus GPaE 9 ,

Poisson's ratio 33.0 , period of the vibrations hT 12 (semi- diurnal periodicity),
amplitude of velocity of the incoming flux smmv /6.50 

Fig. 4 shows velocity profiles of seawater flux (for the maximal flux) for linear seabed profile
and for sinusoidally perturbed seabed profile (bumpy bed, Fig. 1), respectively. The profiles
of  xd0 define the water velocity profiles so that the velocity profile takes the shape of the
sea bed perturbations, respectively, but the deflections remain practically unchanged for the
given set of model parameters (Fig. 3, curve 4 and curve 5).

The ice-shelf response to the semi-diurnal tidal wave, which is modulated by the wave with
MSf-frequency [12], is shown in Fig. 5 and this response is in concordance with observed
ice-shelf histories [8]. The ice-shelf response is symmetric unlike to the previous result
obtained in the model based on the incoming pressure perturbations [30]. The symmetric
response in the model is defined by equal inflowing and outflowing water fluxes in the water
flux harmonic history, which is considered in the experiment (i.e. time-averaged water flux is
equal to zero).
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Fig. 4. Velocity profiles of the incoming water flux for linear seabed profile (curve 1)
and for sinusoidal seabed profile (curve 2). The maximal velocities in the incoming

water flux correspond respectively to the minimal ice-shelf deflection (which is equal
to zero). Young's modulus GPaE 9 , Poisson's ratio 33.0 , ice-shelf length

kmLsh 4 , smmv /6.50 
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Fig. 5. The history of ice-shelf terminus deflection obtained for the semi-diurnal
incident ocean wave, which is modulated by the wave with MSf frequency (14.76 days)
[12]. The time interval covers three periods of the MSf component. The amplitudes of
the flux velocity in the MSf component are equal to (i) 03v at the first period (ii) 07.0 v
at the second period and (iii) 05.1 v at the third period, where smmv /6.50  . Young's

modulus GPaE 9 , Poisson's ratio 33.0 , ice-shelf length kmLsh 4 .
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3.2 Infragravity Waves (Response to High-Frequency Forcing)

Responses of the ice shelf to the harmonic incoming waves with higher frequencies ranging
from 0.001 to 0.06 Hz, differs in a number of ways from the response at typical tidal
frequencies of hours and days (Fig. 6). The main difference is that the amplitude of the ice-
shelf deflections depends on the frequency of the forcing. The amplitude of the forcing,
which is defined as the velocity amplitude of the incoming water flux, is considered as a
given value, for example, is equal to 0.1 m/s, for all frequencies in the experiment (Fig. 6),
but the amplitude of the ice-shelf terminus deflections ranging (a) from about 0.05 m (at 0.06
Hz) to about 0.9 m (at 0.011 Hz) for kmLsh 2 (Fig. 7a), (b) from about 0.1 m (at 0.02 Hz)

to about 1.5 m (at 0.0035 Hz) for kmLsh 3 (Fig. 7b), (c) from about 0.1 m (at 0.06 Hz) to

about 3 m (at 0.0016 Hz) for kmLsh 4 (Fig. 7c).
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Fig. 6. The histories of ice-shelf terminus deflection obtained at the infragravity
incident ocean waves [1]: 1 - sT 60 ; 2 - sT 70 ; 3 - sT 88 ; 4 - sT 100 .
Young's modulus GPaE 9 , Poisson's ratio 33.0 , incoming flux velocity

amplitude smv /1.00 
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Fig. 7. Ice-shelf terminus deflection amplitude versus ocean wave frequency. The
spectral distributions have been obtained for (a) kmLsh 2 , (b) kmLsh 3 , (c)

kmLsh 4 . The considered frequencies ranging from 0.001 to 0.06 Hz. The maximum

of the amplitude is reached in the first maximum (peak) at sT 88 for kmLsh 2 , at

sT 282 for kmLsh 3 , and at sT 630 for kmLsh 4 . Young's modulus

GPaE 9 , Poisson's ratio 33.0 , incoming flux velocity amplitude smv /1.00  .
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In other words, the spectral amplitude distribution, which reveals the resonance peaks,
appears in the high-freq part of the ocean wave spectrum (Fig. 7). For a wide ocean wave
spectrum, which begins from tidal frequencies and extends till the lower boundary of the
high-frequencies (i.e. theoretically supposed that the spectrum is continuous), the ice-shelf
deflection follows the incoming wave. "Follow" means that the amplitude of ice-shelf
terminus deflection corresponds (approximately equals to) amplitude of the incoming wave.
Generally speaking, water flux velocity in the model should depend on the frequency of the
forcing. In practice, a constant value of the water flux velocity amplitude was used in the
numerical experiments with high-freq forcing. Thus, we can observe monotonously
increasing trends in the spectral amplitude distributions (Fig. 7). Nevertheless, the main
difference of the high-freq part of the spectrum is the existence of the resonance peaks,
some of which fall into the infragravity part of the spectrum [1].

Fig. 8 shows flexural ice-shelf profiles (waves in ice shelf) obtained by the model of
Holdsworth & Glynn (1978) (Fig. 8a) and by the model developed here (Fig. 8b). The
deflections obtained by the developed model are in agreement (in amplitude of the flexures)
with the deflections obtained by the Holdsworth and Glynn model due to the fitting of the
velocity of the incoming seawater flux. However, the positions of the nodes/antinodes and
the eigen-frequencies are distinguished because the models differ in the field equations and
in the sets of boundary conditions.
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Fig. 8. Successive flexural ice-shelf profiles obtained by (a) the Holdsworth & Glynn
model (1D elastic beam model); (b) by the full elastic model based on Eq. (1) - (2). Two

successive curves are separated by the 10/Tt  time step. The period T of the
forcing is sT 100 . Ice-shelf length kmLsh 4 , Young's modulus GPaE 9 ,

Poisson's ratio 33.0 , incoming wave amplitude in the Holdsworth & Glynn model
mA 3.0 , incoming flux velocity amplitude in the full model smv /1.00 

4. DISCUSSION

The modelled ice-shelf response has revealed that ice-shelf deflections are in agreement (in
amplitude of the flexures) with the ones obtained by the model of Holdsworth & Glynn (1978)
and in contrariety with preliminary results in [30]. Furthermore, the model, which based on
Eq. (2) and on the incoming water flux velocity as the boundary condition, provides "finite"
amplitude of the deflections at resonance frequencies despite the absence of dissipative
terms in the equations of the model. In other words, both fixed amplitude of the velocity of
incoming seawater flux and incompressible fluid in sub-ice-shelf area, inhibit the deflections
and define the amplitude of the deflections firmly.

The comparison of the two models reveals visible distinction in the deflection profiles for tidal
forcing. The distinction in the deflection profiles obtained by the two models considered here,
emerges in the positions of the maxima of the deflections. The deflection maximum locus
changing with ice-shelf length variation in the defection profiles obtained by the developed
model (Fig. 2a), but the maximum locus becomes unchanged in the profiles obtained by the
Holdsworth & Glynn model (Fig. 2b). More detailed investigation of the models shows that
the distinction can be associated with different sub-ice-shelf pressure perturbations as the
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response to the different forcings: (a) the forcing in the form of pressure perturbation at the
ice-shelf terminus or (b) the forcing in the form of incoming seawater flux. More exactly, the
Holdsworth & Glynn model provides higher pressure perturbations, than the model based on
the incoming seawater flux. In other words, the model based on the pressure perturbations
on the ice-shelf terminus provides higher flexural moment, which forces the ice-shelf plate
become more deflected.

Moreover, the thin plate Helmholtz function (Helmholtz free energy) and the thin plate
equilibrium equation, which results from the Helmholtz function [17] and on which the ice-
shelf deflection models are based, imply some assumptions about the stress tensor (Cauchy
stress tensor). Exactly, the three stress components xz , yz , zz are approximately
assumed equal to zero [17]. This assumption provides simple relations between thin plate
deflections and deformation tensor components that implies a specific type of the above
mentioned Helmholtz function [17], that is the following

         dydxUUUUUDA yyxxxyyyxx
22 12

2
1~  , (9)

where D is the rigidity coefficient, and the plate equilibrium equation becomes PUD 2 .
The full model considers a common elastic medium deformation, which implies that there is
a distinction in the deformations of different horizontal layers in the medium. Thus, the three
stress components xz , yz , zz are non-zero. This forcing complementary hampers the
deflections of the plate. In other words, the plate described by the full model is anticipated to
be more rigid in comparison with the thin plate, which is described by the thin plate model.
Thus, the distinction in the flexures profiles can be explained within the framework of the
basic theory of thin plate small deflections. Moreover, the explanation of the preliminary
results in [30] and of the disagreement with the results obtained by the Holdsworth and
Glynn model can be sought in this distinction in the approaches of the two models - full
model and thin plate model.

The ice-shelf response obtained in the harmonic history of the forcing, is symmetric and is
defined by equal inflowing and outflowing seawater fluxes in the harmonic history of the
forcing (Fig. 5).

Generally speaking, the amplitude of the velocity of incoming seawater flux should depend
on the frequency of the incident wave. If the amplitude of the flux velocity is fixed, i.e. if we
neglect the dependence on the frequency, the amplitude spectral distribution reveal weakly
monotone increasing trend (Fig. 7). Nevertheless, the main result is the existence of the
resonance peaks in the high-freq part of the spectrum. The resonance effects are confirmed
by the experiments performed by the model of Holdsworth & Glynn for elastic beam.
However, the eigen-frequencies are distinguished because the models differ in the basic
equations and in the sets of boundary conditions. In particular, for ice shelf, which extends
for 4 km, eigen-frequencies that were derived from the spectral distribution (Fig. 7c), are

Hz3
0 106.1  ( sT 6300  ), Hz3

1 103.6  ( sT 1581  ), Hz2
2 107.1 
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( sT 602  ). The same three eigen-frequencies, that can be obtained in the eigen-value

problem in the 1D model of Holdsworth & Glynn, are Hz3
0 1003.2  ( sT 4920  ),

Hz3
1 109.5  ( sT 1671  ), Hz2

2 1012.1  ( sT 882  ), respectively.

The phenomenon, which is known as "beats" and which accompanies with resonance
effects, can be observed in the ice-shelf deflection histories, obtained by both the
Holdsworth & Glynn model and the full model (Fig. 9). The main history, which occurs at the
frequency of the forcing (of incident wave), is modulated by the history with a low frequency

 . For example, the modulating frequency is 5.7 in the Holdsworth & Glynn
model (Fig. 9,a) and is 5.6 in the full model (Fig. 9,b), respectively, for the forcing
frequency Hz01.0 ( sT 100 ).

Several of the obtained eigen-frequencies fall into infragravity part of the spectrum - the
range of the frequencies of incident ocean waves that are observed in Antarctica. The term
"infragravity" was introduced in [1] and means the frequencies ranging from 0.004 Hz to 0.02
Hz. The investigation of IG-wave impact on the Ross Ice Shelf [1] reveals that the rms
amplitude of IG wave is about a factor 3 greater than swell and this factor increases to about
15 when sea-ice is present. The results obtained in this manuscript allow to conclude that
the maximum of the amplitude of ice-shelf deflections in the infragravity spectrum can be
directly associated with the resonance effect.

Finally, the full elastic model reveals that the modelled ice-shelf response to the pressure
perturbation is inconsistent with the expected response, which should be in agreement in the
amplitude of vibrations with the amplitude of the incident wave in a non-resonant case. The
realistic results that in agreement with observations of ice-shelf flexures (in the pointed
meaning), can be obtained by the full model with a little alteration in this model. The
alteration means a return to the continuity equation and to the Euler equation instead of the
channel wave equation in the general statement of the problem. The boundary condition at
the open side of the channel is replaced by the history of seawater flux velocity instead of
pressure perturbations history, respectively.
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Fig. 9. Histories of ice-shelf terminus deflections obtained (a) by the Holdsworth &
Glynn model (b) by the model developed in this manuscript. Young's modulus 9E

GPa, Poisson's ratio 33.0 , period of the vibrations sT 100 , incident wave
amplitude mA 1 , incoming flux velocity amplitude smv /1.00 
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5. CONCLUSIONS

The full elastic model based on the coupling of continuity equation with the Euler equation
that are applied in the model instead of the channel wave equation for sub-ice-shelf
seawater flux, provides a good agreement between the amplitudes (i) of the modelled ice-
shelf vibrations and (ii) of the incident ocean wave (in a non-resonant case). The boundary
condition at the open side of the channel is replaced by the history of seawater flux velocity
instead of pressure perturbations history, respectively.

The spectral amplitude distribution reveals resonance peaks that emerge in the high-freq
part of the ocean wave spectrum. The model, which based on the continuity equation for the
sub-ice-shelf seawater flux, provides "finite" amplitude of the deflections at resonance
frequencies despite the absence of dissipative terms in the equations of the model.

Some of the resonance peaks fall into the "infragravity" part of the spectrum, which extends
from 0.004 Hz to 0.02 Hz [1]. Thus, the results of the modelling allow to explain the
maximum of ice-shelf deflections in the infragravity spectrum, which was observed on the
Ross Ice Shelf [1]. The explanation can be found in the existence of the resonance on these
high frequencies in the system, which includes glacier, ice shelf and sub-ice-shelf seawater.

NOTATION

A the amplitude of the incident ocean wave, m

0d depth of the sub-ice-shelf channel, m

E Young's modulus
g gravitational acceleration, 9.8 m s-2

H ice thickness, m

sh ice surface elevation, m

bh ice bed elevation, m

L ; GlL ; ShL full ice vertical cross-section length; glacier length; ice shelf length, m

T period of incident ocean wave/period of ice shelf vibrations, s
U horizontal deflection of ice, m
v horizontal sub-ice-shelf water velocity, m/s

0v the amplitude of the incoming sea water flux velocity, m/s

W vertical deflection of ice, m
x horizontal axis along a flow line, m
z vertical axis pointing upward ( 0z at sea level), m
 Poisson's ratio
 ; w ice density, 900 kg m -3; sea water density, 1030 kg m -3

ik stress tensor components, Pa
 frequency of incident ocean wave/ frequency of ice shelf vibrations, Hz
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