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Abstract 
A backward differentiation formula (BDF) has been shown to be an effective way to 
solve a system of ordinary differential equations (ODEs) that have some degree of 
stiffness. However, sometimes, due to high-frequency variations in the external time 
series of boundary conditions, a small time-step is required to solve the ODE system 
throughout the entire simulation period, which can lead to a high computational 
cost, slower response, and need for more memory resources. One possible strategy to 
overcome this problem is to dynamically adjust the time-step with respect to the sys-
tem’s stiffness. Therefore, small time-steps can be applied when needed, and larger 
time-steps can be used when allowable. This paper presents a new algorithm for ad-
justing the dynamic time-step based on a BDF discretization method. The parame-
ters used to dynamically adjust the size of the time-step can be optimally specified to 
result in a minimum computation time and reasonable accuracy for a particular case 
of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained 
from an activated sludge model (ASM) for biological wastewater treatment processes. 
The algorithm was tested for various solver parameters, and the optimum set of three 
adjustable parameters that represented minimum computation time was identified. 
In addition, the accuracy of the algorithm was evaluated for various sets of solver 
parameters. 
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1. Introduction 

The use of suspended microorganisms to remove undesired components, including or-
ganic carbon, nitrogen, and phosphorus species, is referred to as activated sludge 
processes and is widely used around the world in municipal wastewater treatment 
plants (WWTPs) [1] [2] [3]. Mathematical models of activated sludge processes, re-
ferred to as Activate Sludge Models (ASMs), provide a cost-effective way to evaluate 
design, control, and optimization of the processes and have been used extensively in 
practical applications and academic research [4] [5] [6] [7]. Henze et al. [8] proposed 
the first ASM (ASM1), and since then, several other versions of ASMs have been pro-
posed [9]. ASM1 represents wastewater composition using 13 constituents, where each 
constituent may interact with each other through 8 reactions in which the general mass 
balance of each variable results in a system of ordinary differential equations (ODEs) 
describing the change in concentrations over time. Non-linear reaction rates based on 
Monod Kinetic cause a system of highly nonlinear ODEs. In some applications, the 
computation time of the ASM is critical due to a long simulation period, the need for 
online simulation [10], and the use of parameter estimation algorithms that require 
numerous simulations. For example, Alikhani et al. [11] modeled a large scale WWTP 
with an ASM by using Markov-Chain Monte Carlo (MCMC) sampling and solved a 
large system of ODEs for 500,000 times to obtain the ASM’s parameter posterior prob-
ability distribution. Therefore, applying a fast algorithm to solve ASMs that can signifi-
cantly decrease the computation time of such applications would be highly desired. In 
addition to the non-linearity of the system of ODEs comprising ASMs, they typically 
cover a wide range of biochemical reaction rate scales, ranging from seconds (for ex-
ample, oxygen transfer rate) to days (for example, microbial growth rates) and result in 
a mixed (stiff/nonstiff) system of ODEs [12] that generally requires small time-steps 
when conventional ODE solver algorithms are used. Furthermore, due to the inherent 
fluctuating behavior of the external forcing vectors, including variation in the time se-
ries of the influent rate and the characteristics in wastewater treatment streams, the op-
timal time-step size can vary greatly during the course of a simulation.  

Explicit and semi-explicit ODE solvers have been shown not to perform well for sys-
tems of ODEs with high degrees of stiffness, while backward differentiation formulas 
(BDFs) have been shown to be much more suitable [13] [14] [15] [16]. In addition, be-
cause the degree of stiffness during the course of the simulation can vary, using a fixed 
but small time-step can translate to a heavy computational burden. A dynamically 
adaptive time-step algorithm can automatically adjust the time-step according to the 
degree of stiffness, resulting in a more optimal use of computational resources. For 
example, Celaya et al. [17] proposed a method to select or reject a proposed time-step 
in adaptive algorithms by evaluating the local truncation error at each time-step to 
maintain the error below a given threshold.  

The goal of this study is to propose a fast, adaptive algorithm based on BDFs that can 
be implemented in any ASM solver package and in other large, non-linear systems of 
ODEs. The proposed adaptive algorithm can be optimized for specific problems by 
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properly adjusting the solver parameters and can be used in other numerical method 
applications such as advection-dispersion-diffusion equations solution [18], Bayesian 
parameter estimation framework [19], and other application of numerical methods (e.g. 
[20] [21] [22]). The proposed adaptive BDF algorithm in this study contains three ad-
justable parameters that can be manipulated to achieve the minimum computation time 
for a given system of ODEs. In addition, a sensitivity analysis is conducted to identify 
the optimally adjustable parameters of the adaptive algorithm for a system of ODEs 
obtained for a sample ASM problem.  

2. Methods 

2.1. Adaptive Backward Differentiation Algorithm  

The system of ODEs can be written in the following general form [23]: 

( ) ( )( )d , ,
d

t t t
t
=

C f C U                         (1) 

( ) ( )0 0 ,t t= is givenC C U  

where, t is the time, ( )tC  is the state variables vector, and 0C  is the initial condition. 
( )tU  is the boundary condition or the external forcing vector given for the entire si-

mulation period. The first and second order BDFs can be represented considering a va-
riable time-step 1i i ih t t+= −  in a given time-step (i) as [17] [24]:  

1
1 1 1 0st

i i i i ih+ + += − − =F C C f                        (2) 

2
1 1 1 1

1 1

1.5 1.5 0.5 0.5 0nd i i
i i i i i i

i i

h h h
h h+ + − +
− −

 
= − + + − = 

 
F C C C f           (3) 

where i indicates the time-step with non-constant step size ih , ( ), ,i i i it=f f C U  
represents the discretized form of Equation (1) when ( )i it=C C  and ( )i it=U U . In 
Equations (2) and (3), 1

1
st

i+F  and 2
1
nd

i+F  are the first and second order BDFs consider-
ing non-constant step size at each time-step, respectively, which will be henceforth de-
noted as F  for the sake of generality. The conventional Newton-Raphson (NR) me-
thod for solving the system of non-linear F  to find 1i+C  can be formulated as: 

( ) ( ) ( )1
1

1
1 1

k k
l

k
i i iJ −+
+ + += − ×C C F                         (4) 

where k is the iteration index beginning from 0, 1
lJ −  is the inverse of Jacobian matrix 

(Equations (5) and (6)). Due to the fact that inverting the Jacobian matrix is computa-
tionally intensive, especially as the size of the matrix grows, it is beneficial if the inverse 
of the Jacobian matrix can be reused and is recalculated only when necessary. Therefore, 
in the proposed method, lJ  in Equation (4) is a recycled Jacobian matrix evaluated at 
some previous time lt .  

( )1 , ,I
l l lst

l ij l Kn n
l n n

f t
J h

c
δ

×
×
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C U
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1.5
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l l lnd

l ij l Kn n
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×
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 ∂
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where n is the size of the ODEs, ijδ  is the Kronecker Delta, 1st
lJ  and 2nd

lJ  denote 
the Jacobian matrix for the first and second order F , respectively, where K

lc  is the 
Kth element of vector lC , and similarly, If  is the Ith element of vector f  at lt . In 
addition, to further speed up the NR convergence, the following initial guess of the state 
variables is used at the first iteration (initial guess) of the NR [25]: 

( )0
1i i i+ = + ∆C C C                             (7) 

where 1i i i−∆ = −C C C . 
The adaptive time interval scheme adjusts the size of time-steps based on monitoring 

the convergence of the NR method [25] [26]. The time-step size keeps growing by the 
factor of 1 + ρ (ρ ≥ 0) until the NR’s iteration k in Equation (4) remains smaller than a 
threshold kmax, and this inverse of Jacobian matrix ( 1

lJ − ) will be used in Equation (4). 
The iteration continues until the number of iterations to achieve convergence in the NR 
method exceeds kmax. At this time, a new Jacobian matrix will be computed and/or the  

time-step size will be reduced by the factor of 1
1 γ+

 ( 0γ ≥ ). Figure 1 depicts a de-  

tailed flowchart of this algorithm, in which ρ, γ, and kmax are, respectively, the time-step 
inflation factor, the time-step depression factor, and the desired maximum iteration 
number of NR method that can be manipulated for each particular case of ODEs to 
achieve the minimum computation time.  

2.2. Activated Sludge Model  

The proposed algorithm was applied to solve an ASM based on a real, full-scale WWTP. 
Influent flow and its composition data were collected from nitrification-denitrification 
reactors at the Blue Plains wastewater treatment plant in Washington, DC over a period 
of 120 days. This system was modeled as three reactors in a series based on mass bal-
ance equation (Equation (8)) with a modified ASM1 reaction network consisting of 11 
reactions and 15 constituents, as shown in Table 1 [11]. The total volume of the reactor 
was 17,500 m3, divided into three tanks in a series, as depicted in Figure 2. Figure 3 
shows the influent flow and its ammonia concentration with return activated sludge 
(RAS) and waste activated sludge (WAS) flow. In addition, an alternative, hypothetical 
influent was created by applying a moving average filter with a seven-day mask to re-
duce noise and a high-order frequency to evaluate the effect of temporal fluctuations on 
the choice of the solver’s adjustable parameters. The time-series vector of flows and 
concentrations and the temperature (partly shown in Figure 3) represent the ( )tU  in 
Equation (1). Significant fluctuation can be observed in the input data, especially in the 
inflow rate, mainly because the Blue Plains WWTP receives combined sewer flow, and 
storm events can generate unpredictable fluctuations in both rate and composition of 
influent into the plant.  
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Figure 1. Adaptive time-step BDF algorithm with adjustable parameters of ρ, γ, and kmax. 

 

 
Figure 2. Activated sludge process containing three tanks in series with aeration in tank 1 and 
external loading rate in tank 3. The mixed liquor inside the bio-reactors contains both soluble 
and particulate constituents which are shown with S and X sign in Table 1, respectively. 
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Table 1. Process reaction rates (R) and constituents stoichiometeries (∅). 

j Process Rate 

1 Aerobic growth of heterotrophs ,
,

S O NH
H B H

S S O H O NH NH

S S S X
K S K S K S

µ
+ + +

 

2 Aerobic growth of heterotrophs on methanol ,
, ,

M O NH
H B H

M H M O H O NH NH

S S S X
K S K S K S

µ
+ + +

 

3 Anoxic growth of heterotrophs 
,

,
, ,

O HS NO NH
H g B H

S S O H O NO H NO NH NH

KS S S X
K S K S K S K S

µ η
+ + + +

 

4 Anoxic growth of methylotrophs 
,

,
, , ,

O MM NO NH
M B M

M M M O M O NO M NO NH NH

KS S S X
K S K S K S K S

µ
+ + + +

 

5 Aerobic growth of autotrophs ,
, ,

O NH
A B A

O A O NH A NH

S S X
K S K S

µ
+ +

 

6 Decay of heterotrophs ,
,

, , ,

O HO NO
H h B H

O H O NO H NO O H O

KS Sb X
K S K S K S

η
 

+  + + + 
 

7 Decay of methylotrophs ,
,

, , ,

O MO NO
M h B M

O M O NO M NO O M O

KS Sb X
K S K S K S

η
 

+  + + + 
 

8 Decay of autotrophs ,
,

, , ,

O AO NO
A h B A

O A O NO A NO O A O

KS Sb X
K S K S K S

η
 

+  + + + 
 

9 Ammonification of soluble organic nitrogen , , ,,a ND Bio Bio B H B M B Ak S X X X X X = + +    

10 Hydrolysis of entrapped organics ,

, , ,

O HS Bio O NO
H h Bio

X S Bio O H O NO H NO O H O

KX X S Sk X
K X X K S K S K S

η
 

+  + + + + 
 

11 Hydrolysis of entrapped organic nitrogen 10
ND

S

X R
X

 

j SS SM XS XB,H XB,M XB,A XP SO SNO SNH SND XND 

1 
1

HY
−    1    

1 H

H

Y
Y
−

−   XBi−    

2  
,

1

H MY
−

  1    
,

,

1 H M

H M

Y
Y
−

−   XBi−    

3 
1

HY
−    1     

1
2.86

H

H

Y
Y

−
−  

XBi−    

4  
1

MY
−    1    

1
2.86

M

M

Y
Y

−
−  

XBi−    

5      1  
4.57 A

A

Y
Y
−

−  1

AY
 1

XB
A

i
Y

− −    

6   1 pf−  −1   pf      ( )1 p XBf i−  

7   1 pf−   −1  pf      ( )1 p XBf i−  

8   1 pf−    −1 pf      ( )1 p XBf i−  

9          1 −1  

10 1  −1          

11           1 −1 
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Figure 3. Influent flow and ammonia concentration, RAS and WAS over time: (Left) Unfiltered; (Right) Filtered using moving average 
technique over a 7-day span. 

Governing ODEs  
In ASMs, the activated sludge process is commonly represented as a series of attached, 
mixed reactors. These reactors hold a series of processes that can occur simultaneously, 
resulting in changes in the concentration of constituents. Figure 2 depicts a schematic 
of the activated sludge process of this study in the WWTP. A transient mass balance 
can be mathematically performed for each state’s variables, consisting of the concentra-
tion of each model constituent, resulting in a system of ODEs, as expressed in Equation 
(8). Therefore, Equation (8) expresses the changes in constituents’ concentrations over 
time as controlled by influents, effluents, reactions, and various mass-transfer processes 
[9] [23]: 

( )

( )

( )

,
, , , , , ,

, , ,

*
, , , ,

1

d
d

m

m

r

N
j m

m ret m ret j ret m in j in m m m m i m
m m

N

m m m m j m
m m

N

m r j r j m m m j m j m
r

C
V Q C Q C H Q Q C

t

H Q Q C

V R F V C C m

ω ω ′ ′ ′
′≠

′ ′
′≠

=

= + +

 
+ − 
 

+ ∅ + − +

∑

∑

∑ 

          (8) 

where V (L3), C (M∙L−1), Q (L3∙T−1), and ω indicate the volume, concentration, flow, and 
flow-fraction factor (determining how much of the inflow and return flow enters each 
tank in a step-feed system), respectively, H is the Heaviside (unit step) function, R 
(M∙T−1) is the reaction rate (Table 1), ∅ is the stoichiometric coefficient (Table 1), F 
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(T−1) is the mass transfer rate, *C  (M∙L−1) is the saturated concentration, and m  
(M∙L−1) is the external mass flow rate. And as for the indices, j indicates a constituent, 
m represents a tank, “ret” indicates a return flow, “in” shows conditions in influent, and 
r indicates the reaction. In addition, Nm is the total number of tanks, and Nr is the total 
number of reactions. ,m mQ ′  is the flow rate from tank m' to tank m, due either to se-
quential stages or through feedback or bypass (a positive ,m mQ ′  value means to flow 
into tank m). In Equation (8), the term on the left side is the rate of change in the total 
mass of the constituents j in tank m. The first term on the right side of Equation (8) is 
the mass inflow due to return flow; the second term is the mass inflow of the influent; 
the third term represents inflow from the preceding stage or feedback flow if it is 
present; the fourth term is the outflow of constituents; the fifth term is the production 
or disappearance of constituents due to reactions; the sixth term is the effect of 
rate-limited mass transfer (for example, aeration); and the last term is the direct addi-
tion of the constituents (for example, the addition of a carbon source for denitrifica-
tion). To obtain solid-particle concentrations in the return flow ( ,j retC ), a dynamic cla-
rifier model [27] or a quasi-steady-state approximation (that is, performing mass bal-
ance while ignoring the solid storage changes in the clarifier) can be applied. The study 
described in this paper used the former approach.  

3. Results and Discussion 

The resulting system of ODEs, consisting of 15 state variables and 45 ODEs, was solved 
with a range of adjustable parameters for both unfiltered and filtered external vectors, 
and the running time for each set of solver’s parameters was recorded. The solver algo-
rithm was implemented into the BioEst program, which was developed using the C++ 
language. The results presented in the next section were obtained by running the ex-
ecutive version of the C++ code on a desktop computer with a quad-core Intel® 2.67 
GHz Xenon® CPU and 8 Gb RAM. 

Figure 4 shows the results of the simulation for soluble chemical oxygen demand 
(sCOD), dissolved oxygen (DO), ammonia, and heterotroph biomass concentrations 
based on unfiltered influent obtained using the solver parameters ρ = 0.01, γ = 0.01, and 
kmax = 10.  

3.1. Optimum Adjustable Parameters  

To get the minimum computation time (running time) and acceptable accuracy, the 
user can assign the three adjustable parameters, including the inflation growth rate of 
the time-step (ρ), the depression rate of the time-step (γ), and the maximum NR’s ite-
ration (kmax). A small initial time-step of h0 = 10−5 day is chosen for all the cases. First, 
the effect of changing ρ and γ is investigated by varying ρ between 0.0001 and 0.1 and γ 
between 0.0001 and 1 at the fixed kmax of 4. Figure 5 shows the results for effect of ρ and 
γ on running time. In both scenarios, filtered and unfiltered ( )tU , the running time is 
very sensitive to ρ, and the minimum running time occurs at ρ = 0.01. Figure 5 also 
shows that the sensitivity of the algorithm to γ is lower than to ρ in both the filtered and  



J. Alikhani et al. 
 

306 

 
Figure 4. Results obtained for 120 days by using adaptive BDF method in a 3 tanks in series 
scheme with solver parameters of ρ = 0.01, γ = 0.01, and kmax = 10. 

 
unfiltered scenarios. For example, at ρ = 0.01, in the case of unfiltered influent, γ = 0.01 
gives a minimal running time and γ = 0.1 gives a similar running time, showing the low 
sensitivity of the algorithm to γ. The effect of the maximum number of iteration kmax is 
examined by assigning the values of 4, 10, 40, and 100. Figure 6 shows the effect of kmax 
on the running time for two sets of inflation-depression parameters. In both scenarios, 
the algorithm shows a reasonably high sensitivity to kmax, and a minimum running time 
occurs at kmax = 10. In conclusion, for the selected system of ODEs, the minimum 
computation time is achieved at ρ = 0.01, γ = 0.01, and kmax = 10.  

For a given set of ρ, γ, and kmax, the run-time is always smaller for the filtered ( )tU  
than for the unfiltered ( )tU , as expected, because the algorithm needs smaller time- 
steps to resolve the higher disturbance in the unfiltered ( )tU . Nevertheless, the dif-
ference in the running time is not significant. 
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Figure 5. Effect of ρ and γ in a constant kmax = 4 in run-time for solving the system of 45 ODEs during 120 days. (Left) Unfiltered (t); 
(Right) Filtered U(t). 
 

 
Figure 6. Effect of kmax in run-time for solving the system of 45 ODEs during 120 days. (Left) Unfiltered (t); (Right) Filtered U(t). 

3.2. Variable Time-Step Pattern 

The adaptive time-step algorithm increases the size of the time-step in the case when 
the NR algorithm continues converging and decreases the size of the time-step when 
the NR fails to converge. This pattern can be seen in Figure 7, which shows the varia-
tion of the accepted time-steps during the course of the simulation for four sets of ad-
justable parameters. The results show that the pattern of variation in the time-step is 
substantially affected by different sets of adjustable parameters. For example, as Figure 
7 shows, at kmax = 10, the time-step can reach a maximum value of 0.35 days, whereas, 
at kmax = 4, the maximum value is 0.14 days. In other words, a higher kmax allows larger 
time-steps and further reuse of the Jacobian matrix at the price of a higher number of 
NR iterations at each time-step. This indicates that the optimal value of kmax depends on  
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Figure 7. Adaptive time-step (dt) variation for 120 days of applying adaptive BDF method on 
unfiltered U(t) for different adjustable parameters. 

 
the effort needed in the Jacobian inverting process relative to the computational cost of 
NR iterations, which are mainly matrix-vector multiplications. Therefore, the optimal 
kmax can also depend on the size of the Jacobian matrix (that is, the number of state va-
riables) and how well-posed the Jacobian matrix is.  

As Figure 7 shows, at any given kmax, when γ is varied from 0.1 to 0.01, the pattern of 
the time-step variation differs significantly and shows more fluctuation at a lower γ. 
This indicates that the solver parameters ρ and γ essentially control how much the 
time-step is increased or decreased. A smaller ρ and γ lead to more conservative in-
creases or decreases of the time-step and a larger ρ and γ lead to less conservative in-
creases or decreases.  

3.3. Error Assessment 

One way to evaluate the accuracy of the method is to compare the solution with the ex-
act solution. However, the system of ODEs represented in Equation (1) cannot be 
solved using analytical mathematical methods to find the exact solution so that the  
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Table 2. Maximum and the average error of the ABDF algorithm using various parameter selec-
tions as compared with RK4.  

Parameters emax eavg 

ρ = 0.01, γ = 0.01, kmax = 10 2.10 × 10−2 9.61 × 10−4 

ρ = 0.01, γ = 0.01, kmax = 4 1.33 × 10−2 7.35 × 10−4 

ρ = 0.1, γ = 0.1, kmax = 4 1.78 × 10−2 2.60 × 10−3 

ρ = 0.1, γ = 0.01, kmax = 4 1.45 × 10−2 1.60 × 10−3 

 
numerical error of the proposed adaptive BDF method can be evaluated. For this rea-
son, to evaluate the accuracy of the method, the well-known Runge-Kutta 4th order 
(RK4) method is used to solve the presented system of ODEs with a small constant 
time-step size. The selected time-step size is small enough that the truncation error re-
mains below 10−8 [26]. Then, the numerical results obtained from the RK4 method are 
used as a reference to assess the maximum and average error of the proposed adaptive 
BDF algorithm.  

Since the oxygen mass transfer rate in Tank 1 is set at 
2OF  = 190 day−1 (Equation 

(8)), resulting in the highest order of stiffness in the system of ODEs, the dissolved 
oxygen concentration in Tank 1 is susceptible to showing higher sensitivity to the ap-
plied numerical method. Therefore, relative error is calculated based on the following 
equation: 

( ) ( ) ( )
( )
RK4

RK4

So t So t
e t

So t
−

=                          (9) 

where ( )So t  and ( )RK4So t  show oxygen concentrations at Tank 1, obtained by the 
proposed algorithm and RK4, respectively. Table 2 lists the relative maximum (emax) 
and average (eavg) of ( )e t  for four sets of adjustable parameters. The accuracy assess-
ment results show acceptable accuracy for the proposed algorithm. Specifically, for the 
four cases, the maximum and average errors contain less than 2 and 0.3 percent error, 
respectively.  

4. Conclusion 

In many applications, it is important to enhance the computational efficiency of ASM 
solvers. This paper presents a novel adaptive BDF algorithm to solve the system of 
ODEs arising from ASM models. The proposed method uses the partial evaluation of 
inverse Jacobian matrix in the BDFs and monitoring the convergence of the NR me-
thod to select the size of the time intervals. The method contains three adjustable pa-
rameters, including inflation and depression rates of the time-step and the maximum 
allowable number of iterations for the NR method, to control how time-step size varies 
through the course of the numerical solution. These three adjustable parameters can be 
optimized to reduce the computation time while maintaining acceptable accuracy. The 
algorithm is applied to solve a system of 45 ODEs representing an activated sludge 
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model containing 15 constituents in each of 3 reactors. The sensitivity analysis is con-
ducted, and the optimum adjustable parameters of the adaptive algorithm are identified. 
The accuracy analysis shows an acceptable level of accuracy for the proposed algorithm. 
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