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Abstract 
A charming feature of symplectic geometry is that it is at the crossroad of many oth-
er mathematical disciplines. In this article we review the basic notions with examples 
of symplectic structures and show the connections of symplectic geometry with the 
various branches of differential geometry using important theorems. 
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1. Introduction 

Symplectic geometry originated in Hamiltonian dynamics. Symplectic geometry is the 
study of symplectic structures. These are certain topological structures, but these can 
only exist on even dimensional manifolds. Since symplectic structures are purely topo-
logical structures, they do not depend on any metric structure of the underlying space. 
In the earlier work, Nazimuddin and Rifat (2014) developed a comparison between 
symplectic and Riemannian geometry [1]. After summarizing the basic definitions, 
examples and facts concerning symplectic geometry, this article will proceed to discuss 
the connections between symplectic geometry and contact geometry, Riemannian geo-
metry, Kähler geometry.  

2. Basic Concepts with Examples 

Let M be a even dimensional smooth closed manifold, that is a compact smooth mani-
fold without boundary. A symplectic structure ω on M is a closed ( )d 0ω = , nondege-
nerate ( )0nω ω ω= ∧ ∧ ≠  smooth 2-form. The nondegeneracy condition is equiv-
alent to the fact that ω induces an isomorphism. In symplectic geometry, conformal 
changes to ω (i.e., multiplying by g) would usually force ( )d 0gω ≠ . 
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Example 2.1. The standard symplectic structure on 2n
  is given by 

0
1

d d
n

i i
i

x yω
=

= ∧∑  

where ( )1 2 1 2, , , , , , ,n nx x x y y y   are the coordinates of 2n
 . It is clear that ω0 is 

closed.  
Example 2.2. All manifolds are not symplectic. For instance, S4 is not. If ω0 is a sym-

plectic form on S4, then ω0 is exact, since the second homology class of S4 vanishes [2]. 
In other words, since ω0 is a closed 2-form 0 0dω α= , for some 1-form α0 and 
( )0 0 0 0d ω α ω ω∧ = ∧ . Since 0 0ω ω∧  is a volume form on S4, Stokes theorem implies 

that 

4 40 0 0 0 0.
δ

ω ω ω α∧ = ∧ ≠∫ ∫S S
 

Since S4 has no boundary, the last integral vanishes and ω0 can have no symplectic 
form. 

3. Local Theory 

The natural equivalence between symplectic structures is symplectomorphism. Two 
symplectic structures ω1 and ω2 on manifolds M1 and M2, respectively, are symplecto-
morphic if there exists a diffeomorphism 1 2: M Mϕ →  satisfying ( )1 2ϕ ω ω∗ = . All 
symplectic structures are locally symplectomorphic. In consequence, there are no local 
invariants in symplectic geometry according to the following theorems. In particular 
case, We have Darboux’s theorem which states that, all symplectic structures on a 2n 
dimensional manifold are locally symplectomorphic to the standard structure on 2n

 . 
Theorem 3.1 (Darboux’s theorem) Let M be a manifold of dimension 2n with a 

closed non-degenerate 2-form ω0. For any point p on a symplectic manifold, there ex-
ists a chart U with local coordinates ( )1 2 1 2, , , , , , ,n nx x x y y y  , such that on U 

0
1

d d
n

i i
i

x yω
=

= ∧∑  

Thus locally all symplectic structures are symplectomorphic to Example 2.1.  
Theorem 3.2 (Weinstein’s Theorem) If a submanifold L of a symplectic manifold 

(M, ω), then there exists a neighborhood of L which is symplectomorphic to a neigh-
borhood of the zero section in the cotangent bundle T L∗ . 

Furthermore symplectic structures are “local in time”. That is symplectic deforma-
tions of symplectic structures do not produce new symplectic structures. 

Theorem 3.3 (Moser’s theorem) Let M be a closed manifold and ωt, [ ]0,1t∈  is a 
family of cohomologous symplectic forms on M then there is an isotopy tϕ  with 

0 idϕ =  such that ( ) 0t tϕ ω ω∗ =  for all t. 
In particular, on a symplectic manifold all deformations of symplectic structures 

come from diffeomorphisms of the underlying manifold. The theorem is not true if the 
symplectic structures do not agree off of a compact set. 



A. K. M. Nazimuddin, Md. S. Ali 
 

315 

4. Existence and Classification 

If a symplectic vector bundle is a pair (E, ω) over a smooth manifold M of rank 2n, 
where E → M is a real vector bundle, then ωq (skew-symmetric and non-degenerate) is 
a symplectic form on each fiber Eq, depending smoothly on q. Each of the following two 
characteristics is equivalent to the existence of a symplectic structure (a) the existence 
of a reduction of the structure group of E from general linear group ( )2GL n  to sym-
plectic group ( )Sp 2 ,n   and (b) the existence of an (almost) complex structure on 

( ): EndE J E∈  such that 2J Id= − . 
Now we discuss some recent results on the existence of symplectic structures on both 

open and closed manifolds. The existence problem of symplectic structures on even 
dimensional closed manifolds is quite difficult. However, Gromov has shown that sym-
plectic structures on open manifolds obey an h-principle rule. As the existence problem 
of symplectic structures is based on a differential equation, but it can be reduced to a 
differential inequality and then solved by the h-principle.  

Theorem 4.1 (Gromov’s Theorem) Every 2n dimensional manifold M with almost 
symplectic structure is homotopic through almost symplectic structures to a symplectic 
structure, if M is open.  

If the manifolds are closed, then the existence problem is much more subtle. Often 
there are no h-principle rules. The following result was obtained using Seiberg-Witten 
theory: 

Theorem 4.2 (Taubes Theorem) The connected sum of an odd number of copies of 
2

  does not admit a symplectic structure (even though it admits an almost symplec-
tic structure and a cohomology class ( )2H Mβ ∈  such that 2 0β ≠ ). 

In higher dimensions the uniqueness problem for symplectic forms on closed mani-
folds does not reduce to topological obstruction theory. There is often a dramatic dif-
ference between the space of non-degenerate two-forms and the space of symplectic 
forms [3]. 

5. Connections with Contact Geometry 

The even dimensional analogue theory to contact geometry is symplectic geometry. In 
general, contact manifolds come naturally as boundaries of symplectic manifolds. Also 
a contact manifold by symplectic means by looking at its symplectization [4] [5]. 

Consider (X, ω) be a symplectic manifold. A vector field v satisfying 

vL ω ω=  

where Lvω is the Lie derivative of ω in the direction of v, is called a symplectic dilation. 
A compact hypersurface M in (X, ω) is said to have contact type if there exists a sym-
plectic dilation v in a neighborhood of M that is transverse to M. Given a hypersurface 
M in (X, ω) the characteristic line field LM in the tangent bundle of M is the symplectic 
complement of TM in TX. (Since M is codimension one it is coisotropic and thus the 
symplectic complement lies in TM and is one dimensional.) 

Theorem 5.1. Let M be a compact hypersurface in a symplectic manifold (X, ω) and 
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denote the inclusion map :i M X→ . Then M has contact type if and only if there ex-
ists a 1-form α on M such that d iα ω∗=  and the form α is never zero on the characte-
ristic line field. 

If M is a hypersurface of contact type, then the 1-form α is obtained by contracting 
the symplectic dilation v into the symplectic form: vlα ω= . It is easy to verify the 
1-form α is a contact from on M. Thus a hypersurface of contact type in a symplectic 
manifold inherits a co-oriented contact structure. 

Given a co-orientable contact manifold (M, ξ) its symplectization Symp (M, ξ) = (X, ω) 
is constructed as follows. The manifold ( )0,X M= × ∞  and given a global contact 
form α for ξ the symplectic form is ( )d tω α= , where t is the coordinate on 


.  

Example 5.2. The symplectization of the standard contact structure on the unit co-
tangent bundle is the standard symplectic structure on the complement of the zero sec-
tion in the cotangent bundle. 

The symplectization is independent of the choice of contact from α. To see this fix a 
co-orientation for ξ and note the manifold X can be identified (in may ways) with the 
subbundle of T M∗  whose fiber over x M∈  is { ( ): 0x xT Mβ β ξ∗∈ =  and β > 0 on 
vectors positively transverse to ξx} and restricting dλ the this subspace yields a symplec-
tic form ω, where λ is the Liouville form on T M∗ . A choice of contact form α fixes an 
identification of X with the subbundle of T M∗  under which ( )d tα  is taken to dλ. 

The vector field v
t
∂

=
∂

 on (X, ω) is a symplectic dilation that is transverse to 

{ }1M X× ⊂ . Clearly { }1v Ml ω α
×

= . Thus we see that any co-orientable contact mani-  

fold can be realized as a hypersurface of contact type in a symplectic manifold. In 
summary we have the following theorem. 

Theorem 5.3. If (M, ξ) is a co-oriented contact manifold, then there is a symplectic 
manifold Symp (M, ξ) in which M sits as a hypersurface of contact type. Moreover, any 
contact form α for ξ gives an embedding of M into Symp (M, ξ) that realizes M as a 
hypersurface of contact type. 

We also note that all the hypersurfaces of contact type in (X, ω) look locally, in X, 
like a contact manifold sitting inside its symplectification. 

Theorem 5.4. Given a compact hypersurface M of contact type in a symplectic ma-
nifold (X, ω) with the symplectic dilation given by v there is a neighborhood of M in X 
symplectomorphic to a neighborhood of M × {1} in Symp (M, ξ) where the symplecti-
zation is identified with ( )0,M × ∞  using the contact form v Mlα ω=  and kerξ α= . 

The following proposition shows how symplectic structures can be generated from 
contact structures. 

Proposition 5.5. [6] Let α be a contact structure on a 3-manifold. Then ( )d eθα  is a 
symplectic form on the 4-dimensional manifold M × , where θ is the coordinate on 
 . (Here α is written as a form on M × ). 

Proof. We have ( ) ( )0 d e e d dθ θω α θ α α= = ∧ + . Thus, 

( )2
0 0 e 2d d d d .θω ω θ α α α α∧ = ∧ ∧ + ∧  

Since dα α∧  is never zero and since d dα α∧  does not contain differentials of θ, 
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the claim follows.  
There are also other relations between contact and symplectic geometry [7]. 

6. Connections with Riemannian Geometry 

The differentiable structure of a smooth manifold M gives rise to a canonical symplectic 
form on its cotangent bundle T M∗ . Giving a Riemannian metric g on M is equivalent 
to prescribing its unit cosphere bundle gS M T M∗ ∗⊂  and the restriction of the canon-
ical 1-form from T M∗  gives S M∗  the structure of a contact manifold.  

The following examples of known results are closely related to Riemannian and sym-
plectic aspects of geometry. 

1) A submanifold L of a symplectic manifold (M, ω) is called lagrangian if ω = 0 on 
TL. 

a) Endow complex projective space n
  with the usual Kähler metric and the usual 

Kähler form. The volume of submanifolds is taken with respect to this Riemannian me-
tric. According to a result of Givental-Kleiner-Oh, the standard n

  in n
  has 

minimal volume among all its Hamiltonian deformations [8]. A partial result for the 
Clifford torus in n

  can be found in [9]. The torus 1 1 2 2S S S S× ⊂ ×  formed by 
the equators is also volume minimizing among its Hamiltonian deformations [10]. If L 
is a closed Lagrangian submanifold of ( )2

0,n ω  there exists according to [11] a con-
stant C depending on L such that Vol ( )( )H L Cϕ ≥  for all Hamiltonian deformations 
of L.  

b) The mean curvature form of a Lagrangian submanifold L in a Kähler-Einstein 
manifold can be expressed through symplectic invariants of L [12]. 

2) To estimate the first eigenvalue of the Laplacian operator on functions for certain 
Riemannian manifolds, symplectic methods can be used [13].  

3) Consider a bounded domain 2nU ⊂   with smooth boundary. There exists a pe-
riodic billiard trajectory on U  of length l with 

( )voln
nl C U≤  

where Cn is an explicit constant depending only on n [14]. 
4) Also Jacobi identity { }{ } { }{ } { }{ }, , , , , , 0f g h h f g g h f+ + =  is satisfied as a con-

sequence of the closure of the symplectic form, dω = 0. 

7. Connections with Kähler Geometry 

Kähler manifolds are the remarkable class of symplectic manifolds. M. Gromov [15] 
observed that some of the tools used in the Kähler context can be used for the study of 
symplectic manifolds. One part of his wondering work has grown into which is now 
called Gromov-Witten theory [16]. All Kähler manifolds are symplectic, since the 
Kähler form is closed and non-degenerate For instance, the complex projective space 

n
  is Kähler so that this space is also symplectic. But The converse need not be true, 
but we have the following theorem: 

Theorem 7.1. A structure (M, ω, J) on a smooth manifold X is a Kähler structure if ω 
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is a symplectic form, J is a complex structure, g is a Riemannian metric such that 
( ) ( ), ,g X Y X JYω= . 
Many techniques and constructions from complex geometry are most useful in sym-

plectic geometry. For instance, there is a symplectic version of blowing-up, which is 
closely related to the symplectic packing problem [17] [18], also Donaldson’s construc-
tion of symplectic submanifolds [19]. 

Also any complex surface admits a Kähler structure if and only if the first Betti 
number is even [20]. There are many symplectic 4-manifolds with even b1 (or b1 = 0) 
admitting no Kähler structure [21]. For a minimal Kähler surface we have the following 
theorem.  

Theorem 7.2 Let (X, J) be a minimal Kähler surface. Then inside the symplectic 
cone, the Kähler cone can be enlarged across any of its open face determined by an ir-
reducible curve with negative self-intersection. In fact, if the curve is not a rational 
curve with odd self-intersection, then the reflection of the Kähler cone along the cor-
responding face is in the symplectic cone. 

In addition, for a minimal surface of general type, the canonical class KJ is shown to 
be in the symplectic cone in [22] [23].  

8. Conclusion 

Symplectic geometry is a rather new and vigorously developing mathematical discip-
line. One can very roughly say that if the fundamental quantity in Riemannian geome-
try is length, then the fundamental quantity in symplectic geometry is directed area and 
the fundamental quantity in contact geometry is a certain twisting behavior. In this 
work, we have developed a connection between various branches of differential geome-
try with symplectic geometry. 
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