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Abstract

We study the lifetimes of the remnant produced by the merger of two neutron stars and revisit the determination of
the threshold mass to prompt collapse, Mth. Using a fully general-relativistic numerical approach and a novel
method for a rigorous determination of Mth, we show that a nonlinear universal relation exists between the
threshold mass and the maximum compactness. For the temperature-dependent equations of state considered here,
our results improve a similar linear relation found recently with methods that are less accurate but yield
quantitatively similar results. Furthermore, exploiting the information from GW170817, we use the universal
relation to set lower limits on the stellar radii for any mass.
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1. Introduction

The recent detection of gravitational waves from the merger
of neutron-star binaries(Abbott et al. 2017) has heralded the
new era of multi-messenger gravitational-wave astronomy.
These observations offer new insight into the most extreme
objects in universe, namely, neutron stars, and allow us to
probe and constrain the properties of nuclear matter (Bauswein
et al. 2017; Paschalidis et al. 2018; Annala et al. 2018;
Burgio et al. 2018; Most et al. 2018; Montana et al. 2018;
Radice et al. 2018).

When two neutron stars merge, they will produce an object
that either collapses promptly to a black hole, or does not
(Baiotti et al. 2008). In the latter case, the remnant may be a
metastable object, e.g., a hypermassive neutron star (HMNS),
eventually collapsing to a black hole on a secular timescale, or
survive for much longer times, either as a rotating or a
nonrotating star (see, e.g., Baiotti & Rezzolla 2017, for a
review). In the case of the first detection of merging neutron
stars, GW170817 (Abbott et al. 2017), the precise fate of the
merger remnant is presently unknown, although the formation
of a black hole naturally matches the simultaneous observation
of a short gamma-ray burst (Eichler et al. 1989; Rezzolla et al.
2011), and has been the working hypothesis to set new limits
on the maximum mass of neutron stars (Margalit &
Metzger 2017; Shibata et al. 2017; Rezzolla et al. 2018; Ruiz
et al. 2018).

Determining the time of collapse of the merger remnant is
particularly challenging as there are a number of physical
processes that either determine or undermine the stability of
merger remnant. These include: the ejection of matter
(Rosswog et al. 1999; Kyutoku et al. 2014; Lehner et al.
2016; Radice et al. 2016; Bovard et al. 2017; Dietrich & Ujevic
2017), the angular-momentum transfer via magnetic fields
(Siegel et al. 2013; Kiuchi et al. 2015; Kawamura et al. 2016),
the evolution of the degree of differential rotation (Kastaun
et al. 2016; Hanauske et al. 2017), and possible viscous
effects mediated either by neutrinos or magnetic fields
(Duez et al. 2004; Radice 2017; Shibata & Kiuchi 2017; Alford
et al. 2018).

The determination of the critical (threshold) mass to a prompt
collapse, Mth, is much simpler, although it still poses numerical

and conceptual challenges. Bauswein et al. (2013) were the
first to explore this problem by employing a smooth-particle
approximation for the hydrodynamics and a conformally flat
approximation to general relativity. In this way, they were able
to find a linear universal relationship between Mth and the
compactness of the maximum-mass model,  ≔ M RTOV TOV TOV,
where MTOV and RTOV are, respectively, the mass and radius of
the maximum-mass nonrotating star. Here, we improve on this
result by using a fully general-relativistic approach, a wider
range of compactnesses, and a rigorous definition of the
threshold mass. As a result, we find a nonlinear relation between
Mth and  TOV, which offers a better match to the numerical-
relativity results. Furthermore, exploiting the information from
GW170817, we use the new relation to set more stringent lower
bounds on the radii neutron stars.

2. Methods and Setup

To describe the evolution of the merging system, we solve
the coupled Einstein-hydrodynamics system(Rezzolla &
Zanotti 2013) using the Einstein Toolkit(Löffler et al.
2012). In particular, we evolve the spacetime with the
McLachlan code(Brown et al. 2009), with the same gauges
as in Hanauske et al. (2017). On the other hand, we evolve the
matter with the high-order relativistic-hydrodynamics code
WhiskyTHC(Radice & Rezzolla 2012; Radice et al. 2014).
The numerical grid uses the fixed-mesh refinement driver
Carpet (Schnetter et al. 2004), with a total of six refinement
levels having a highest resolution of 215 m covering the two
stars and a total extent of 700 km. For one equation of state
(EOS), we also considered different resolutions of 215, 287
and 573 m, obtaining threshold masses within a variance
of D M M0.005th .
A number of zero-temperature (“cold”) EOSs are available

for numerical simulations and rely on nuclear physics
calculations following a variety of theoretical approaches.
While these EOSs are suitable to describe the inspiral phase,
they become obviously inadequate after the merger, when the
temperatures reach values of several tens of MeV. To counter
this, it is customary to model the post-merger dynamics by
modifying these EOS and adding a “thermal” contribution via
an ideal-fluid EOS (Rezzolla & Zanotti 2013) so as to account
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for the shock heating (Janka et al. 1993). This approach, while
not self-consistent, is rather robust and such “hybrid EOSs”
have been employed extensively in the literature (Baiotti &
Rezzolla 2017).

However, because our goal here is to determine as accurately
as possible the threshold mass to prompt gravitational collapse,
it is essential that the description of the thermal effects in the
matter is as realistic and self-consistent as possible. In turn, this
forces us to consider EOSs that have a physically consistent
dependence on temperature. Unfortunately, the number of
EOSs that can be employed for this scope and that do not
violate some basic nuclear physics requirement (as it is the case
for the widely employed LS220 EOS; Tews et al. 2017), is
much more restricted. Here, we have employed all of the five
“hot” EOSs that can be used with confidence to determine the
threshold mass. The corresponding properties, when expressed
in terms of the masses and radii of the maximum-mass
nonrotating configuration (hereafter TOV), are reported in
Table 1. Similarly, Figure 1 shows the masses and radii of the
TOV equilibrium solutions, both stable (solid lines) and
unstable (dashed lines). Solid squares mark the maximum-
mass solutions, while open circles represent the models used.

Using these EOSs, we have modeled the initial data under
the assumption of irrotational quasi-circular equilibrium
(Gourgoulhon et al. 2001) and computed it via the LORENE
library for a total of 15 equal-mass (i.e., q= 1) binaries. The
initial separation is of 45 km, so that the binaries perform
around five orbits before the merger. We note that because the
threshold mass for equal-mass binaries is always larger than for
unequal-mass binaries, i.e.,Mth(q= 1)>Mth(q< 1), the use of
equal-mass binaries is not a restriction but rather optimizes the
search for Mth (see also Bauswein et al. 2017, for a discussion).

The measurement of the threshold mass inevitably imposes a
clear definition, but also a straightforward procedure to extract
this information from the numerical-relativity simulations.
Quite generically, one expects that the lifetime of the HMNS,
or collapse time tcoll, will decrease as the mass of the binary is
increased, so that the threshold mass will represent the shortest
possible lifetime. This definition, is however inconvenient
as different EOSs will yield different “shortest lifetimes” and
comparing different EOSs may introduce clear biases. We
resolve this problem by building our analysis around two
important logical steps. First, we consider the collapse time as a
dimensionless quantity by expressing it in terms of the freefall
time τff that, for an object of mass M and radius R, is given by

(Rezzolla & Zanotti 2013)

t
p( ) ≔ ( )M R

R

M
,

2 2
. 1ff

3

Because R∼1/M for stable models, the smallest freefall time
will be achieved for the maximum-mass model, so that the
shortest freefall timescale is t t≔ ( )M R,ffTOV TOV TOV . Second,
we define the threshold mass Mth as the one for which the
merger remnant will collapse over such a timescale, i.e.,

M M M MthTOV TOV for t t 1coll TOV .
We next discuss the procedure followed for the measurement

of the collapse time, tcoll as given by the difference between the
(coordinate) time of merger, tmerg, and that of collapse to a
black hole, tBH, i.e., -≔t t tcoll mergBH . Both of these times can
be measured in a number of different ways. The first one
involves the emission of gravitational waves, with tmerg being
given by the time of the first maximum of the gravitational-
wave strain amplitude h, or of the Weyl scalar Ψ4. The time of
collapse, on the other hand, can be estimated as the time when
the ringdown signal starts. Overall robust measurements
involving gravitational waves are prone to errors as tmerg

depends sensitively on the phase evolution of the binary in its
most nonlinear stage.1 Similarly, determining tBH is complicated
by the fact that the beginning of the ringdown is somewhat
arbitrary and ringdown itself can be modified by the matter
infalling onto the black hole.
To counter these difficulties, tmerg could be measured via the

proper separation between the two stellar cores, marking the
merger as the time when such a separation is below a fraction
of the initial diameters of the two stars. Similarly, tBH could also
be measured in terms of the first appearance of an apparent
horizon. Although these measurements show an overall
consistency, they suffer from the fact that the proper separation
is very sensitive to the properties of the EOSs, and that the first
appearance of the apparent horizon is ultimately set by the
frequency at which it is searched during the simulations.
A third approach for measuring tcoll and tBH instead involves

the monitoring of the minimum of the lapse function α,
which we evolve employing a singularity-avoiding “ +1 log”
slicing(Alcubierre 2008). This quantity has been shown to be a
very good proxy for the tracking and appearance of an apparent

Table 1
Properties of the Maximum-mass Models for the EOSs

Considered Here: BHBΛΦ (Banik et al. 2014), (HS-)DD2
(Typel et al. 2010), SFHo(Steiner et al. 2013), (HS-)TM1
(Hempel et al. 2012), and Togashi+(Togashi et al. 2016)

EOS MTOV RTOV CTOV tTOV Mth ΔMth

(Me) (km) (μs) ( )MTOV ( )MTOV

BHBΛΦ 2.10 11.64 0.26 83.31 1.503 0.005
DD2 2.42 11.94 0.30 80.60 1.364 0.020
SFHo 2.06 10.34 0.29 70.44 1.391 0.016
TM1 2.22 12.6 0.26 91.70 1.520 0.015
Togashi+ 2.23 10.17 0.32 66.12 1.298 0.000

Note. Reported are: the maximum mass of a nonrotating Star MTOV, the
corresponding radius RTOV, the compactness CTOV, and the freefall-timescale
tTOV. Also shown are the threshold masses Mth and the corresponding errors.

Figure 1. Masses and radii of nonrotating equilibrium solutions, both stable
(solid lines) and unstable (dashed lines). Solid squares mark the maximum-
mass solutions, while open circles refer to models used as initial data; note that
some EOSs have initial data with similar properties but different maximum
masses.

1 As the threshold mass is approached, the merger can take place a fraction of
a radian earlier/later than expected, biasing the measurement.
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horizon (Alcubierre 2008) and has the advantage of being
extremely robust. As a result, we can mark the two times
respectively when

a a
a a

=
=

( ) ≔
( ) ≔ ( )

t

t

: min 0.35,

: min 0.2. 2
merg merg

BH BH

These values for a( )min are less arbitrary than they may appear
as αmerg= 0.35 and a = 0.2BH systematically represent the
first minimum and zero of second derivative of the function

a( ( ))tmin , respectively; also, at a = 0.2BH the apparent
horizon is also normally first found. More importantly, the
results are invariant under a change of the values in (2).

In summary, all methods to compute tcoll provide results that
are consistent across different choices. However, when it
comes to robustness and simplicity of implementation, the
monitoring of the minimum of the lapse function represents the
optimal choice and is the one employed in the results that will
be presented next.

3. Results

Figure 2 reports the collapse times normalized to the freefall
timescale of the maximum-mass models, ttcoll TOV, for all of the
EOSs considered; these times are then shown as a function of
the initial half-mass of the binary normalized to the maximum-
mass, M/MTOV. The adoption of such set of dimensionless
quantities has the goal of revealing a behavior of the threshold
mass that is universal, i.e., only weakly dependent on the EOS
(see, e.g., Breu & Rezzolla 2016; Weih et al. 2018, for some
examples).

Filled circles of different colors in Figure 2 report the
numerical data for the various EOSs and mark the values of the
initial masses in the binaries. Note that as tcoll decreases, even
small differences in the initial masses can lead to rather large
differences in the survival time. Also note that only two values
are reported for the Togashi+ EOS, and these differ by only
3.7% in mass (i.e., M= 1.440, 1.435Me); a binary with a
slightly smaller mass (e.g., M= 1.430Me) leads to an HMNS
effectively stable over the timescales investigated here. Finally,
as tcoll should diverge for vanishingly small values of M, we fit
the numerical data with a simple exponentially decaying
function of the type t= -˜ [ ˜( ) ]M M a b texp coll

2
TOV TOV . A rapid

inspection of Figure 2 shows that the exponential fit is rather
good and that a linear approximation would overestimate the
threshold mass. Indeed, near the freefall limit, the behavior of

M MTOV should not be linear as in this limit infinitesimal
changes in M are sufficient enough to yield a prompt collapse.
Such a behavior, frequently encountered in critical-collapse
calculations, requires the function M MTOV to have vanishing
derivative for t t 1coll TOV . Clearly, our nonlinear fitting
reflects this behavior, while a linear one does not.
Figure 2 also reveals that the threshold mass is roughly given

by

» ( )M

M
1.415, 3th

TOV

with an uncertainty of ΔMth=0.05Me, i.e., a relative error of
∼4%. Hence, Equation (3) provides the lowest-order approx-
imation between the threshold mass and the corresponding
maximum mass. The existence of a relation of this type has
been suggested initially by Bauswein et al. (2013), who
concluded that =M M kth TOV , with k a linear function of the
maximum compactness  TOV. More specifically, the universal
ansatz proposed by Bauswein et al. (2013) is that

= +ˆ ˆk a bTOV , with = =ˆ ˆa b3.38, 2.43, independent of
the EOS.
Such a linear ansatz does represent a reasonable first

approximation to the data, but not the most general one. In
particular, if it represents a universal behavior of compact self-
gravitating objects it should be valid for all possible
compactnesses and provide the expected black hole limit, for
which M M 0th TOV for   1 2TOV . Hence, we correct the
linear approximation via a nonlinear fit of the type


= -

-
( )M

M
a

b

c1
, 4th

TOV TOV

where a, b, c are to be determined from the data. However,
imposing the fulfillment of the black hole limit removes one
free parameter and sets = -( )a b c2 2 .
Figure 3 reports with a solid blue line the fit (4) with

b=1.01, c=1.34, against the numerical-relativity data
shown with stars of the same colorcode as in Figure 2 (see
Table 1 for the errors in the fit). Also shown with a red dashed
line is the linear approximation of Bauswein et al. (2017),
which clearly suggests larger threshold masses, most probably
because the conformally flat approximation used by Bauswein
et al. (2013) underestimates the strong-curvature behavior that
characterizes the threshold to black hole collapse. At the same

Figure 2. Measured collapse times tcoll (circles) normalized by their respective
tTOV for the different EOSs. Stars represent the threshold mass, Mth, predicted
by the exponential fit, while the gray-shaded region corresponds to times below
freefall.

Figure 3. Universal relation for the threshold mass with the stars matching the
data in Figure 2; the solid blue line is the nonlinear fit (4), while red dashed line
is the linear fit of Bauswein et al. (2017). The green shaded area reports the
compactness expected for neutron stars, while the inset shows the two universal
relations over a wider range; the dark green shaded area refers to ultra-compact
stars up to the Buchdahl limit.
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time, the difference with the linear approximation of is not
enormous, and is 8% at most for the cases considered here.

Additionally, we show in the inset of Figure 3 a comparison
of the linear and nonlinear fittings for the threshold mass in the
whole range of possible compactnesses, i.e.,  Î [ ]0, 1 2TOV .
The light green area refers to neutron stars, with the lower limit
  0.2TOV deduced from a large sample of EOSs (Most et al.
2018) and the upper limit   0.35TOV set by causality; instead,
the upper limit of the dark green area  < 4 9TOV is set by the
Buchdahl limit for compact stars(Rezzolla & Zanotti 2013).

In addition to providing an improvement over the linear
approximation of Bauswein et al. (2013), the nonlinear
expression(4) can now be used to provide more stringent (
i.e., larger) lower limits on the radii of possible stellar models
in the light of the recent detection of GW170817(Abbott et al.
2017). In particular, following Bauswein et al. (2017), we use
(4) to plot the threshold mass for different potential choices of
R ;TOV ; this is shown in the left panel of Figure 4 with black
solid lines and for =R 10, 11, 12 kmTOV . Also reported in
Figure 4 with a gray-shaded area is the limit set by causality
and that requires M R 0.354TOV TOV (Koranda et al. 1997). As
noted by Bauswein et al. (2017), given the merger of a neutron-
star binary with total massMtot, it is possible to set a lower limit
on Mth. This is shown in the left panel Figure 4, where we
report with a horizontal blue dashed line the total gravitational
mass estimated for GW170817, = -

+
M M2.74tot 0.01

0.04 (Abbott
et al. 2017).

The corresponding uncertainty band (blue shaded area) gives
a lower constraint on Mth, because GW170817 did not lead to a
prompt collapse. The blue band thus constraints the red-shaded
area from below, yielding a lower limit for the radius of the
maximum-mass star,  -

+R 9.74 km0.04
0.14

TOV (red solid line); this
is to be contrasted with the value deduced by Bauswein et al.
(2017), i.e.,  -

+R 9.26 km0.03
0.17

TOV , on the basis of their linear
approximation. Interestingly, to obtain a more stringent
constraint similar to the one derived here, Bauswein et al.
(2017) required a hypothetical detection of a binary
with  M M2.9tot .

The logical approach and the mathematical procedure
followed so far to derive the nonlinear fit (4) for  TOV can be
repeated for the compactness of a fixed mass Mx, i.e.,
 ≔ M Rx x x, thus allowing us to set constraints not only on
RTOV, but on any radius Rx within a reasonable range (the fit
becomes increasingly bad for large masses as the EOSs do not
have solutions well above two solar masses). This is shown in
the right panel of Figure 4, where the values of Mx and Rx are

indicated with blue crosses, while in black is the quadratic fit

= - + + ( )R M M0.88 2.66 8.91. 5x
2

The importance of expression (5) is that it offers a handy
expression for the lower limit of stellar models as deduced from
GW170817. A similar procedure has been followed by
Bauswein et al. (2017), but only for a fixed mass of 1.6Me,
from which it was deduced that R1.6�10.30 km; this result
should be contrasted with the value derived from (5), which is
instead R1.6�10.90 km. Similarly, for a reference star of
1.4Me we obtain R1.4�10.92 km, which is worryingly close
to the estimate by Bauswein et al. (2017) for 1.6Me.

2 On the
other hand, our R1.4 estimate is in good agreement with that of
Most et al. (2018), who have explored a large number of
possible EOSs and built a set of one billion stellar models from
which they deduced that 12.00<R1.4/km<13.45.

4. Conclusions

The detection of the merger of a binary system of neutron
stars has concretely initiated the process of extracting
information on the most extreme state of matter from
gravitational-wave signals. An important phase of this process
lies in understanding the post-merger behavior of the binary
and the stability of the remnant. Indeed, knowing whether the
system promptly forms a black hole is critical to understanding
and interpreting the electromagnetic signals that may be
observed.
Using a fully general-relativistic approach and a novel

method for the determination of the threshold mass, we have
carried out simulations making use of all of the realistic EOSs
available to describe this process. In this way, we have found a
nonlinear universal relation for the threshold mass as a function
of the maximum compactness that is potentially valid for all
compactnesses. At least for the temperature-dependent EOSs
considered here, this universal relation improves the linear
relation found recently with methods that are less accurate, but
that also yield quantitatively similar results. Furthermore,
exploiting the detection of GW170817, we have used the
universal relation to set lower limits on the stellar radii for any
any mass.
These results can be improved in at least two ways. First, as

new hot EOSs become available for numerical simulations it
will be possible to extend the analysis carried here, reducing its
uncertainty. Second, as new detections from binary neutron-

Figure 4. Left panel: the lower bound on RTOV (red) using the universal relation (4). The horizontal blue dashed line marks the mass of GW170817 and its uncertainty.
The red-shaded area shows the values excluded by the detection. The gray-shaded area represents values excluded by the causality constraint. Right panel: universal
relation (black) for the lower limit of Rx for a given mass M (blue crossed); the red arrow represents the constraint from Bauswein et al. (2017) for a 1.6 Me star.

2 Bauswein et al. (2017) provide an estimate only for R1.6.

4

The Astrophysical Journal Letters, 872:L16 (5pp), 2019 February 10 Köppel, Bovard, & Rezzolla



star mergers are revealed, the masses of these systems and their
electromagnetic counterparts will be used to set ever more
precise lower bounds on the radii of neutron stars.

Support comes from the ERC synergy grant “BlackHole-
Cam: Imaging the Event Horizon of Black Holes” (grant No.
610058), “PHAROS,” COST Action CA16214; the LOEWE-
Program in HIC for FAIR; the European Union’s Horizon 2020
Research and Innovation Programme (grant No. 671698) (call
FETHPC-1-2014, project ExaHyPE). The simulations were
performed on the clusters SuperMUC (LRZ, Garching),
LOEWE (CSC, Frankfurt), and HazelHen (HLRS, Stuttgart).
The EOSs employed can be found onstellarcollapse.org.
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