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Abstract

The Ordinary Least Squares Estimator (OLSE) is the best method for linear regression if the

classical assumptions are satisfied for estimating weights. When these assumptions are violated,

the robust methods give more reliable estimates while the OLSE is strongly affected adversely. In

order to assess the sensitivity of some estimators using more than five criteria, a secondary dataset

on Anthropometric measurements from Komfo Anokye Teaching Hospital, Kumasi-Ghana, is

used. In this study, we compare the performance of the Huber Maximum Likelihood Estimator

(HMLE), Least Trimmed Squares Estimator (LTSE), S Estimator (SE) and Modified Maximum

Likelihood Estimator (MMLE) relative to the OLSE when the dataset has normal errors; 10, 20

and 30 percent outliers; 20% error contamination and lognormal contamination in the response
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variable. In the assessment, we use coefficients and their standard errors, relative efficiencies,

Root Mean Square Errors, and the coefficients of determination of the estimators. We also use

the power of the test to assess the effects of the aberrations on the post hoc power analysis of

the estimators. The results show the SE and MMLE outperform the HMLE and LTSE while the

OLSE breaks down completely. The LTSE performs well when the trimming is done to eliminate

only the outliers. Also, SE and MMLE resist the effect of all aberrations in the data and also

have good post hoc power analysis.

Keywords: Ordinary least squares estimator; robust estimators; power of the test; outliers; errors.
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1 Introduction

The Ordinary Least Squares estimator is developed by [1], for estimating regression parameters.
According to [2], this method performs well when the assumptions the method impose on the
dataset are satisfied, but failure of these assumptions renders the OLSE incapable of providing stable
results. The OLSE is mainly susceptible to the effects of vertical outliers, errors, leverages, and
contaminations in the data. Good leverages are those leverages that are outlying in the dimension
of predictors but are close to the regression line. Bad leverages do affect intercept and the slopes of
the OLSE, and they are outliers in the space of predictors and are far from the fitted line. Vertical
outliers are those observations that have outlying values for the corresponding error term, and their
presence affects the ordinary least squares estimation. A dataset is said to be contaminated if data
points from other distribution are present in the data of the distribution under study. A contaminant
can be an outlier or an inlier. OLSE is sensitive to these aberrations leading to unreliable estimates
including inflated standard errors. As a result, robust methods were introduced to take care of the
limitations of the OLSE. Some pioneers of Robust regression methods include; ([3]-[9]) and many
others. In this study, we assess the sensitivity of OLSE and some robust regression estimators
to vertical outliers, errors and contaminations in the data. One of the focuses of this study is to
compare the performance of the estimators across the six criteria: coefficients and their standard
errors, relative efficiencies, Root Mean Square Errors, coefficients of determination and the power
of the test.

2 Multiple Linear Regression

The multiple linear regression model can be written in matrices notation as

y = Xβ + e (2.1)

where y is an n × 1 vector of observed response values, X is the n × p matrix of the predictor
variables, β is the p× 1 vector contains the unknown parameters and has to be estimated, and e is
the n × 1 vector of random error terms. Therefore to fit this model to the data, we have to use a
regression estimator to estimate the unknown parameters in β, to have β̂, where β̂T = (β̂1........β̂P ).
The expected value of yi, that is the fitted value, E(yi) is given by

ŷi = XT
i β̂. (2.2)

As a result the residuals can be computed using ei = yi− ŷi, where i = 1, 2, ..., n and n is the sample
size. According to [10], if the assumptions of the error terms are met, that is the ei ∼ N(0, σ2), then
the least squares regression estimator is the maximum likelihood estimator for β. In practice, the
assumption of normality often holds approximately in that it describes majority of the observations
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but some observations are found to have a different or no-pattern at all. The presence of such
atypical observations can have a large distorting influence on the classical optimal statistical method.

2.1 The ordinary least squares estimator

The least squares estimator aims to minimize the sum of the square residuals as∑
e2 = (Y −Xβ)T (Y −Xβ). Therefore, using the OLSE to estimate the regression parameters in

(2.1), we have

β̂ = (XTX)−1XTY. (2.3)

We can compute the least squares estimates directly from any dataset when XTX is nonsingular.
However, if the assumptions of the OLSE are not met, the OLSE cannot be used to estimate the
regression parameters because the estimates are highly distorted. As a result, some robust methods
were introduced by ([11]-[14]) to address this inadequacy.

2.2 Robust regression estimators

Tiku and Akkaya [15] defined robust estimators as estimators which perform well when errors are
normally distributed and do not breakdown when errors deviate from normality. These estimators
are defined by properties of efficiency with high breakdown points.

2.3 Huber maximum likelihood estimator

The class of M-estimator models contains all models that are derived to be maximum likelihood
models. The most common method of robust regression is M-estimation by [11]. The M-estimator
minimizes a function ρ of the errors given as

n∑
i=1

ρ
(ei
s

)
=

n∑
i=1

ρ

(
yi − xTβ

s

)
, (2.4)

where ”s” is an estimate of scale from a linear combination of the residuals. The function ρ gives
the contribution of each residual to the objective function. Alma [2] stipulates that a reasonable ρ

should have the following properties, ρ(e) ≥ 0, ρ(0) = 0, ρ(e) = ρ(−e), ρ(ei) ≥ ρ(e
′
i) for |ei| ≥∣∣∣e′i∣∣∣ , ρ is continuous [16], and the objective function of the least squares estimation is given by

ρ(ei) = e2i . So we minimize equations (2.4) with respect to each of the p parameters in (2.4).

n∑
i=1

xijψ
(ei
s

)
=

n∑
i=1

xijψ

(
yi − xTi β

s

)
= 0 (2.5)

where j = 1, 2, ..., p and i = 1, 2, ..., n; and ψ(u) = ∂ρ
∂u

is the score function. We define a weight

function as w(u) = ψ(u)
u

, where u =
yi−xTi
s

, which results in wi = w
(
ei
s

)
, for i = 1, 2, ..., n with

wi = 1 if ei = 0. Substituting this into (2.5) results in

n∑
i=1

xijwi

(
yi − xTi β

s

)
= 0 (2.6)

Since s ̸= 0, we define the weight matrix W = diag(wi : i = 1, 2, ..., n). Solving (2.6) above for β
the subject results in the equation

β̂ = (XTWX)−1XTWY (2.7)
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2.4 Least trimmed squares estimator

Rousseeuw’s 1984 LTSE, [9], is given by

β̂ = min
h∑
i=1

(e2i ) (2.8)

where (e21 ≤ e22 ≤, ...,≤ e2n are the ordered squared residuals) and LTSE is computed by minimizing
the h ordered squared residuals, where h =

([
n
2

]
+ 1
)
; when n and h are the sample size and the

trimming constant, respectively [17]. Using the h trimmed dataset ensures that estimates have a
high breakdown point of 50% but a low efficiency of 7.13%, [18].

Rousseeuw and Leroy [13], suggested a trimming constant of h = [n[1 − α] + 1] where α is the
trimmed percentage. The largest squared residuals are deleted and the least squares method is
applied on the trimmed dataset. Moreover, this helps to discard outliers and their influence on
the regression estimators. LTSE can be very efficient based on the size of the trimmed dataset
(h) and the level of outliers in the data. However, in situations where there are more outliers
and only some are trimmed this method can also perform as poorly as the ordinary least squares
method of estimation. Also, if more observations are deleted where there are only few outliers, good
data points will be discarded from the dataset. Least-trimmed-squares has a break-down point of
50%, hence makes the LTSE a high break-down method of estimation. This implies that half of
the data has to be influential points before estimates of the least trimmed estimator be affected
when the method of the ordinary least squares is applied. LTSE essentially proceeds with OLSE
after the deletion of the most extreme positive or negative residuals. LTSE on the other hand, can
misrepresent the trend in the data if it is characterized by clusters of extreme cases or if the data
set is relatively small. The breakdown value is n−h

n
for the LTSE estimate.

2.5 S-estimator

The S-estimation introduced by [12] minimizes the dispersion of the residuals. The high breakdown
S-estimator possesses a desirable property, that is, it is affine, scale and regression equivariant [18].
S-estimator minimizes the dispersion of the scaled residuals, that is, S Estimator is the β̂ that makes
s(r(β1), .....r(βn) being minimal. The robust S-estimation minimizes a robust M-estimate of the
residual scale

1

n

n∑
i=1

ρ
(ei
s

)
= k. (2.9)

Differentiating (2.9) we obtain the estimating equations for S-estimator

1

n

n∑
i=1

xiψ
(ei
s

)
= 0 (2.10)

where ψ is replaced with an appropriate weight function. Biweight or Huber function is usually
used as with most M-estimation procedures. Although S-estimates have a breakdown point of Break
Down Point (BDP ) = 0.5, it comes at the cost of a very low relative efficiency [19]. The choice of
the tuning constant is a = 1.548 and k = 0.1995 for 50% breakdown and about 29% asymptotic
efficiency. To increase the efficiency of the S-estimator, if a = 5.182, the Gaussian efficiency rises
to 96.6% but the breakdown point drops to 10%. Tradeoffs breakdown and efficiency are based on
the selection of tuning constant a, and k. The final scale estimate, s, is the standard deviation of
the residuals from the fit that minimized the dispersion of the residuals. [12] stated that if we set
the tuning constant a = 1.547,this makes the S-estimator to have 50% BDP.
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2.6 Modified maximum likelihood estimator

The MMLE is a special type of M-estimation developed by [16]. Alma [2] defined MMLE as
the estimator with high breakdown value and high efficiency. It was the first estimator with a
high breakdown point and high efficiency under normal error. MMLE has three-stage procedure
described by [16] as

1. A high breakdown estimator is used to find an initial estimate, which we denote β̃. The
estimator needs not to be efficient. Using this estimate the residuals, ri(β̃) = yi − xTi β̃, are
computed.

2. Using these residuals from the robust fit and (2.9), an M-estimate of scale with 50% BDP is
computed. This s(r1(β̃)...rn(β̃)) is denoted sn. The objective function used in this stage is
labeled ρ0.

3. The MM-estimator is now defined as an M-estimator of β using a redescending score function,
ψ1(u) =

∂ρ1(u)
∂u

, and the scale estimate sn obtained from Stage 2. So an MM-estimator β̂ is
defined as a solution to

n∑
i=1

xijψ1

(
yi − xTi β

sn

)
= 0 (2.11)

where j = 1, ..., p. The objective function ρ1 associated with this score function does not
have to be the same as ρ0 but it must satisfy the following conditions:

(a) ρ is symmetric and continuously differentiable, and ρ(0) = 0.

(b) There exists a > 0 such that ρ is strictly increasing on [0, a] and constant on [a,∞).

(c) ρ1(u) ≤ ρ0(u)
A final condition that must be satisfied by the solution to (2.11) is that

n∑
i=1

xijψ1

(
yi − xTi β̂

sn

)
≤

n∑
i=1

xijψ1

(
yi − xTi β̃

sn

)
. (2.12)

The first two stages of the MM-estimation process are responsible for the estimator having high
breakdown point, whilst the third stage aims for high asymptotic relative efficiency. This is why
ρ0 and ρ1 need not be the same, and why the estimator chosen in stage 2 can be inefficient. Yohai
[16] showed that when estimating MM-estimator, using an estimator with 50% BDP at the first
stage will result in the final MM-estimator has 50% BDP. The MM-estimator is very resistant to
multiple leverage points and vertical outliers. The MME is also equivariant and hence it transforms
’properly’ in some sense, [13].

3 Results and Discussion

To assess the sensitivity of the robust methods above, we used datasets on anthropometric measure-
ments of patients from Komfo Anokye Teaching Hospital (KATH). The dataset is on Body fat as
response and Body Mass Index (BMI), Triceps skin-fold (TS), Arm Fat as percentage composition
of the body (parmfat) and Height as predictors which are measured with OMRON machine. We
also use coefficients of the model for the original data with normal errors as the parameters and
in conjunction with simulated predictors from log-normal distribution to simulate the response
variable using R software.

3.1 Dataset with normal errors

Tables 1 and 2 contain the measures for comparing the estimators for dataset with normal errors.
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Table 1. The coefficients (standard errors) of the estimators for original dataset with
normal errors

Methods Intercept BMI Parmfat Height TS

OLSE 7.362(0.945) 0.845(0.056) 0.145(0.082) 0.004(0.010) 0.288(0.018)
LTSE 7.544(0.872) 0.830(0.051) 0.204(0.076) 0.002(0.010) 0.281(0.017)
HME 7.407(1.012) 0.84(0.059) 0.163(0.088) 0.004(0.011) 0.287(0.020)
SE 7.454(1.007) 0.832(0.059) 0.173(0.088) 0.005(0.011) 0.287(0.020)
MME 7.419(1.008) 0.836(0.059) 0.165(0.088) 0.004(0.011) 0.2869(0.020)

Source: [20]

Table 2. Residual standard error, relative efficiency, coefficient of determination and
the power of the test for original dataset with normal errors

Method of
estimation

Standard
error

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 1.0650 1.0000 0.9696 1.0000
LTSE 0.9641 1.2203 0.9641 1.0000
HME 1.2050 0.7811 0.9574 1.0000
SE 1.0720 0.9870 0.9586 1.0000
MME 1.0670 0.9963 0.9577 1.0000

Source: [20]

From Table 1, it is observed that all the estimators performed well, since the errors are normally
distributed. The standard errors, Relative efficiencies and the coefficients of determination from
Table 2, also showed that when the errors are normal, all the estimators perform well.

3.2 10% outliers

The coefficients for the different estimation methods are presented in Table 3.

Table 3. The coefficients (standard error) of the estimators for 10% outliers
perturbation

Methods Intercept BMI Parmfat Height TS

OLSE 5.642(13.035) 1.580(0.765) -0.597(1.137) -0.048(0.143) 0.1941(0.255)
LTSE 7.257(0.977) 0.849(0.058) 0.146(0.087) 0.003(0.011) 0.289(0.020)
HME 6.924(1.316) 0.895(0.077) 0.125(0.115) 0.0003(0.014) 0.279(0.026)
SE 7.295(1.064) 0.844(0.063) 0.158(0.093) 0.004(0.012) 0.288(0.021)
MME 7.257(1.014) 0.849(0.060) 0.1464(0.090) 0.003(0.011) 0.289(0.021)

Source: [20]

From Tables 3 and 4, it is observed that only OLSE was affected when the dependent variable has
10% atypical observations. The coefficients of the OLSE have values which differ much from when
the errors were normally distributed. It also has the least coefficient of determination among all
the estimators. Moreover, OLSE assuming large value for residual standard error and small value
for relative makes it unreliable.
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Table 4. Standard error, relative efficiency, coefficient of determination and power of
the test for 10% outliers

Methods
Standard

error
Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 14.6900 1.0000 0.1702 0.9850
LTSE 1.0810 184.6682 0.9681 1.0000
HME 1.2850 130.6885 0.9674 1.0000
SE 1.3590 116.8435 0.9616 1.0000
MME 1.3460 119.1114 0.9609 1.0000

Source: [20]

3.3 20% outliers

With 20% outliers, the coefficients and measures of performance are presented in Tables 5 and 6
respectively.

Table 5. The coefficients (standard error) of the estimators for 20% outliers

Methods Intercept BMI Parmfat Height TS

OLSE -3.678(19.725) 2.278(1.158) -1.268(1.720) -0.009(0.216) 0.086(0.385)
LTSE 5.901(3.021) 0.878(0.184) 0.228(0.266) 0.007(0.031) 0.275(0.061)
HME 6.289(1.732) 0.927(0.102) 0.137(0.151) -0.0001(0.019) 0.280(0.034)
SE 7.436(1.114) 0.836(0.065) 0.188(0.097) 0.001(0.012) 0.293(0.022)
MME 7.459(1.033) 0.838(0.061) 0.182(0.091) 0.0004(0.011) 0.294(0.021)

Source: [20]

Table 6. Standard error, relative efficiency, coefficient of determination and power of
the test for 20% outliers

Methods Standard
error

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 22.2300 1.0000 0.1186 0.9000
LTSE 3.0940 51.6224 0.8083 1.0000
HME 1.5520 205.1613 0.9638 1.0000
SE 1.6270 186.6826 0.9621 1.0000
MME 1.6130 189.9373 0.9618 1.0000

Source: [20]

The OLSE failed on almost all the criteria. It has large residual standard error, low relative
efficiency and low coefficient of determination, which undermines the usefulness of the OLSE for
this perturbed dataset. On the contrary, robust methods such as MME and SE perform well, this
is because, they reported estimates which are similar to estimates for the normal error dataset.

3.4 30% outliers

Tables 7 and 8 present the numerical measures (criteria) for comparing the regression estimators
when there are 30% vertical outliers.

The OLSE broke down completely at this stage with some robust methods slightly affected. Some
of the robust estimators have very large standard errors and small coefficients of determination
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Table 7. The coefficients (standard error) of the estimators for 30% outliers
perturbation

Methods Intercept BMI Parmfat Height TS

OLSE -18.310(19.239) 3.193(1.129) -2.691(1.678) 0.141(0.211) -0.408(0.376)
LTSE -16.837(8.393) 2.641(0.502) -1.361(0.726) 0.034(0.085) -0.217(0.176)
HME -13.141(13.952) 2.6703(0.819) -1.843(1.217) 0.062(0.153) -0.120(0.272)
SE 7.676(1.206) 0.837(0.071) 0.180(0.105) -0.001(0.013) 0.296(0.024)
MME 7.683(1.211) 0.839(0.074) 0.176(0.1067) -0.002(0.012) 0.296(0.024)

Source: [20]

Table 8. Standard error, relative efficiency, coefficient of determination and power of
the test 30% outliers perturbation

Methods Standard error
Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 21.6800 1.0000 0.1132 0.9800
LTSE 8.4150 6.6376 0.5075 1.0000
HME 13.3400 2.6412 0.4934 1.0000
SE 2.0980 106.7843 0.9690 1.0000
MME 2.0470 112.1716 0.9682 1.0000

Source: [20]

with unreliable coefficients. The modified maximum likelihood estimator and the S-estimator were
robust to the influence of the outliers.

3.5 20% error contamination

Tables 9 and 10 present the estimates for regression parameters from a dataset with contaminated
response variable. The 20% of the observations of the response variable were replaced with observations
from the Cauchy distribution.

Table 9. The coefficients (standard error) of the estimators for 20% error
contamination

Methods Intercept BMI Parmfat Height TS

OLSE -10.326(122.134) 11.743(7.169) -10.774(10.649) -1.313(1.338) -1.068(2.384)
LTSE 1.715(23.406) 5.447(1.120) -4.589(1.510) -0.531(0.334) -0.410(0.322)
HME 7.533(1.579) 0.929(0.093) -0.027(0.138) 0.002(0.017) 0.273(0.031)
SE 7.488(0.994) 0.8452(0.058) 0.136(0.087) 0.002(0.011) 0.292(0.019)
MME 7.427(0.946) 0.8528(0.057) 0.1231(0.086) 0.002(0.010) 0.292(0.020)

Source: [20]

In this section, 20% error contamination from Cauchy distribution distorted the performance of
some estimators. The OLSE and LTSE performed poorly. However, estimators such as, MME, SE
and HME performed well. The performances of the MME and SE are very impressive in this study.
The coefficients of MME and SE are very similar to that of the normal errors. In addition, the
residual standard error, coefficients of determination and power of the test are also analogous to
the estimates of the original data with normal errors.
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Table 10. Standard error, relative efficiency, coefficient of determination and power
of the test 20% error contamination

Methods
Standard

error
Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 137.6000 1.0000 0.0261 0.2500
LTSE 15.6700 77.1079 0.2376 0.9960
HME 1.4140 9469.7399 0.9683 1.0000
SE 1.4160 9443.0081 0.9695 1.0000
MME 1.4030 9618.8140 0.9695 1.0000

Source: [20]

3.6 Log-normal contamination

Distributional robustness of the robust methods was assessed by simulating dataset from log-normal
distribution. The coefficients of the model for the original data with normal errors were used as the
parameters and in conjunction with simulated predictors from log-normal distribution to simulate
the response variable. Tables 11 and12 below present the results for the simulated dataset.

Table 11. The coefficients (standard errors) of the estimators for non-normal
distribution(lognormal)

Methods Intercept BMI Parmfat Height TS

OLSE 207.577(429.437) 10.677(10.669) -3.854(21.11) -2.859(1.982) -1.114(6.238)
LTSE 47.622(26.191) 0.4520(0.6718) -0.453(1.274) -0.1289(0.125) 0.478(0.379)
HME 11.269(3.373) 0.804(0.084) 0.213(0.166) -0.0051(0.016) 0.320(0.049)
SE 8.558(1.372) 0.837(0.034) 0.134(0.067) 0.007(0.006) 0.283(0.012)
MME 7.969(1.740) 0.843(0.041) 0.152(0.075) 0.008(0.007) 0.288(0.024)

Source: [20]

Table 12. Standard error, relative efficiency, coefficient of determination and power
of the test for non-normal distribution(lognormal)

Methods Standard error
Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 582.8000 1.0000 0.0273 0.2600
LTSE 35.1200 275.3785 0.0235 0.2200
HME 4.2420 18875.4693 0.5737 1.0000
SE 1.7270 113881.8231 0.9394 1.0000
MME 1.6550 124006.1117 0.9469 1.0000

Source: [20]

From the Tables 11 and 12, the R2 values show that OLSE and LTSE broke down with HME slightly
affected. Moreover, using the coefficients and the relative efficiency, it is also clear that OLSE and
LTSE did not do well. This is because the data was simulated from a heavy tailed distribution.
On the other hand, MME and SE were still resistant to the aberrations in the data. Moreover,
robust methods like MME and SE are insensitive to data from fat tailed distributions, therefore,
the results in this section have illustrated the distributional robustness of MME and SE.
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4 Conclusion

This study compares the performance of some robust regression methods against the ordinary least
squares method by using more than one criterion. The results show that the robust methods such
as MME and SE are resistant to all manner of aberrations: outliers and contaminations in the
datasets. The study also shows the distributional robustness of MME and SE. OLSE and LTSE
performed poorly with 20% contaminations. This illustrates the vulnerability of OLSE and LTSE
when the dataset to be used is highly contaminated. The results again show that HME performed
averagely when there are high outliers and error contaminations.The loss of power of the OLSE
and LTSE with 20% contaminations also indicates how unreliable they are. This is because the
contaminated dataset report small power of the test for them as compared to the other estimators.
Therefore, in this study, we realize that MME and SE perform excellently in all the datasets and
across all the criteria.
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