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Abstract

A new technique of the Mickens iterative method has beesepted to obtain approximate analytic
solutions of the Inverse Cubic Truly Nonlinear Oscillatarthis paper, we have used Fourier series|and
utilized truncated terms in each steps of iteratione Tethod is illustrated by an example and |the
solutions obtained by this method agree nicely with thectekkequency. Also the solutions give mgre
accurate result than other existing results and the métlumhvergent.
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1 Introduction

Problem of nonlinear oscillators occupies many reseescidamely, the nonlinear oscillations occur in
many real systems from macro to nano in size, and ateagie or auxiliary motions which follow the main
motion. Thus, nonlinear oscillations are evident in manylgielf science, not only in physics, mechanics
and mathematics but also in electronics, chemistrypdpyoand astronomy. It has been a research subject of
intension focus because most of the oscillatory systemseayeoften governed by a system of nonlinear
differential equation. To solve this type of problems somesi it is possible to replace a nonlinear
differential equation with a related linear equation thgreximates the original nonlinear equation closely
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enough to provide useful results. But such linearization isalvatys possible or feasible. In this situation
there are several analytic approaches to find approximateostd to nonlinear problems.

To deal with problems of nonlinear oscillation systerhs, most widely used analytical technique is the
perturbation method [1,2] which is, in principle, usefulthere exist small parameters in the nonlinear
problems. The parameters are analytically expandedoimier series of the parameter. The coefficients of
the series are found as solutions of a set of linear probléavgever, in both science and engineering, there
exist many nonlinear problems without small parameter&nBY¥ there exists such a parameter, the
analytical solutions given by the perturbation methods havepst oases, a small validity. Thus, there are
many other methods developed for solving nonlinear oscillatistesis, including the Krylov-Bogoliubov-
Mtropolskii (KBM) method [3-8], the Lindstedt-Poincare timed [9,10] and the multiple scales method [11]
which is valid even for rather large amplitudes of oatith. However, it is usually difficult to achieve
higher-order analytic approximations by using these methasterily, the weighted linearization method,
the modified Lindstedt-Poincare method, power series appraad homotopy analysis method [12-15]
have been presented for obtaining approximate periods wite kEmgplitude of oscillations. But these
methods involve tedious derivations and computations, and theadificult to implement. Further, they are
applicable only to nonlinear equations with odd nonlinearity.

Another one is harmonic balance (HB) method which providegeneral technique for calculating
approximations to the periodic solutions of differential ¢iqus. It corresponds to a truncated Fourier series
and allows for the systematic determination of the cdeffis to the various harmonics and the angular
frequency. HB method which is originated by Mickens [46H farther work has been done by Wu [17],
Gottlieb [18], Hosen [19Fnd so on for solving the strong nonlinear problems. A approach, using a
rational harmonic balance formulation, was introduce@élendez et al. [20] they demonstrate the utility of
the procedure by applying it to several nonlinear oscillatgstesns. The mathematical foundations of
harmonic balancing have been investigated by several dudild. The works of Borges et al. [2Mijletta

[22] and Bobylev et al. [23] provide overviews to various issuegerning convergence and error bounds
for the approximations to the periodic solutions.

Nowadays iteration method is used widely by some autlkesMickens [24-26], Hu and Tang [27] and
Haque et al. [28-30] etc. which is valid for small togetwéh large amplitude of oscillation to attain the
approximate frequency and the harmonious periodic solution of soclnear problems. Mickens [24]
provided a general basis for iteration methods as theguarently used in the calculation of approximations
to the periodic solutions of nonlinear oscillatory diffeiial equations. A generalization of this work was
then given by Lim and Wu [31] and this was followed by an amuit extension in Mickens. Actually
iteration method is a technique for calculating approximatiorise periodic solutions of the truly nonlinear
oscillator differential equations which is patented by RiiEkens in 1987.

The main purpose of this article is to develop a modificatf the iteration technique for the determination
of approximate solution and angular frequency of inverse cuiitinear oscillator. We compare the result

with existing results obtained by various researchers argdniteintioned that our solution measure better
results than other existing procedures the method is convergent.

2 The Method

Assume that the nonlinear oscillator
F(X,x)=0, x(0)=A, x(0)=0, Q)
and further assume that it can be rewritten to the form

x+ f (% %) =0, )
where over dots denote differentiation with respect to titne ,
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We choose the natural frequenf of this system. Then addir@2X to both sides of Eq. (2), we obtain
X+ Q%% = Q%X - f (% X) =G(X,X) . 3)
Now, we formulate the iteration scheme as
Ko ¥ QX =G(%,%,); k=0,1,2,3,............ 4)

together with initial condition

%o () = Acost). (5)
Hence X ,; satisfies the initial conditions

%1 (0)=A  %..(0)=0. (6)
At each stage of the iteratioan is determined by the requirement that secular tetrnsHould not occur
in the full solution of X, (t) .
The above procedure gives the sequence of solutdyi), X, (t), X, (t),-.

The method can be proceed to any order of approximationdumito growing algebraic complexity the
solution is confined to a lower order usually the second [24]

2.1 Solution procedure
Let us consider the inverse cubic nonlinear oscillator

x+x"°=0.

X==X"". )
Adding Q?X on both sides of Eq. (7), we obtain

X+ Q°x =Q%-x"2, (8)

According to Eqg. (4), the iteration scheme of Eq. (8) is

R + QX =QEX— X, 9)(

The first approximationXl(t) and the frequenc§, will be obtained by puttin =0 in Eg. (9) and
using Eq. (5), we obtain
% +Q%x =Q2%Acosd - (Aco® )”* (10)
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where 8 = Q.

-1/3

Now expanding(COSH) '~ in a Fourier Cosine series in the interval/f), then Eq. (10) reduces to

% +Q2x = Q2 Acosd-——_(1.426348caB~ 0.713174c658 05094106

1/3

—-0.407528cosd+ 0.344831ca®39 0.301728 C6§sll

11)

No secular term in the solution fog(t) requires that the coefficient of treos9 term be zero from the
right hand side of the Eq. (11). Thus we have

o = 1194298
(U A3 (12)
Then solving Eq. (11) and satisfying the initial conditig0) = A, we obtain
X (1) = A(1.052312 cod- 0.0625c083 0.014880ads5 MBRBOS?H (13)
+0.003021cos8- 0.001762co€l)1
This is the first approximate solution of Eq. (8) and thateel Q, is to be determined.
The value ofQ; will be obtained from the solution of
%+ Q1% =07 % - X" (14)
Substituting X, (t) from Eg. (13) into the right hand side of Eq. (14), we iobta
X, +Q%x, =Q} A(1.052312 cod- 0.0625co83 0.014880ads5
—0.005952cos#+ 0.003021cd@9 0.001762 C6§sll
15
—%(1.052312 co§- 0.0625co83 0.014880ads5 (19)
~0.005952cosd+ 0.003021ca@9 0.001762c6311
%, +Q2x, = Q?A(1.052312cof - 0.0625c083 0.014880a@s5
—0.005952cosZ+ 0.003021ca®9 0.001762 C@§;11
16
- %(1.38767 cog— 0.644734coB3 0.454911 & (16)
-0.362239cosd + 0.306038ca?9 0.267895 c@};:
The elimination of secular term from the Eq. (16), we iobta
o = 1.14834
1T a8 a7
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Then solving Eqg. (16) and satisfying initial condition. Weadtthe second approximate solution,

X, (t) = A(1.044512co€ - 0.053302co83  0.013203¢bs5

18
—-0.005598cos#+ 0.002863ca?39 0.00167806$] (18)

The third approximation%;and the value o€, will be obtained from the solution of

2

% + Q5% =Q5 %, — %1, (19)
Substituting X, (t) from Eq. (18) into the right-hand side of Eq. (19), weaobt

% +Q2x, = Q2A(1.044512co8 - 0.053302cc88  0.013203¢ds
~0.005598c0sd+ 0.002863ca@9  0.001678c6311
-1 (1.044512c08- 0.053302c083  0.013203¢bs5

A1/3
-0.005598cos#+ 0.002863cad9 0.001678chsti )

(20)

% +Q2x, = Q2A(1.044512cof - 0.053302cc83  0.013203&
~0.005598cosf+ 0.002863ca#9  0.001678cAp11

-1 (1.39292co# - 0.65307co83 0.460341ads5

A1/3
-0.366474cosd+ 0.309581cad9 0.270977cfs1l

(21)

Secular terms can be eliminated if the coefficienthe cosg term is set to be zero from the Eq. (21), we
obtain

1.154799
QZ = T (22)
Thus Q,, Q,, Q,,..... respectively obtained by Eq. (12), (17), (22),.... represtm@sapproximation of
frequencies of oscillator (7).

3 Results and Discussion

An iterative technique is presented to obtain approximatdisolof inverse cubic nonlinear oscillator. In
order to test the accuracy of the modified approach oititen method, we compare our results with the
other existing results from different methods. To show d@beuracy, we have calculated the percentage
errors (denoted by Er%) by the definition

Qe (A) B Qi ( A)
Q.(A)
We have used a modified iteration method to obtaining approxise&igons of the above oscillator. It has

been shown that, in most of the cases our solution giggsficant by better result than other existing
results.

><10({,wherei =0,1, 2(T
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Herein we have calculated the first, second and third appegei frequencies which are denoted @y,

Ql, and Qz respectively. All the results are given in Table lcampare the approximate frequencies. We

have also given the existing results determined by Mickenation method [26] and Mickens HB method
[26].

Table 1. Comparison of the approximate frequencieswith exact frequency Qe [26] of

X+ x '3 =0.

Exact frequency Q, 1.154700
A2/3
Amplitude First approximate Second approximate Third approximate
A frequency frequency frequency
Q, Q, Q,
Er(%) Er(%) Er(%)
Mickens iteration 1.08148 1.07634 0.988591
method [26] 273 A2/ AZ3
6.3 6.78 14.38
Mickens HB method 1.31329 1.18824
[26] A3 A3 _
13.7 2.9
Adopted method 1.19429 1.14834 1.154799
4% A2/3 A2/3
3.43 0.55 0.0085

In our study in the above table, it is seen that thelthider approximate frequency obtained by adopted
method is almost same with exact frequency. It is fothad, in each of the cases our solution gives
significantly better result than other existing resulthe Tcompensation of this method consists of its
simplicity, computational efficiency and convergence. ltalso observed that the Mickens’ iteration

technique is convergent for this oscillator.

3.1 Convergence and consistency analysis

The basic idea of iteration methods is to construct a sequef solutionsx, (as well as frequenci@k)
that have the property of convergence
lim lim

Xe:k_,ooxk or, Qe= Qk

k = oo

Here X; is the exact solution of the given nonlinear oscillator.

In our technique, it has been shown that the solution givelesbeerror in each iterative step compared to
the previous iterative step and finall@2 —Qe| :|l.154799-1.15470(|)<£, where € is a small
positive number andA is chosen to be unity. From this, it is clear that the adbptethod is convergent.
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An iterative method of the form represented by Eq. (4) wihal guesses given in Eg. (5) and Eq. (6) is

lim lim
1Q, —Q|=0.

said to be consistent if X — Xe| =0 or,
k k - o

— 00|
In the present study we observe that

lim
Q, -Q=0as|Q,-Q=0.
k — 00

Thus the consistency of the method is achieved.

4 Conclusion

In this work, we used a simple but effective modificationtlod iteration method to handle strongly
nonlinear oscillators. An example is given to illustrée éffectiveness and convenience of this method. The
results anticipated were compared with the others mefftoal obtained results show that the modification
of the iteration method is more accurate than otherbadednd this method is valid for large region.
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