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Abstract 
 

A new technique of the Mickens iterative method has been presented to obtain approximate analytic 
solutions of the Inverse Cubic Truly Nonlinear Oscillator. In this paper, we have used Fourier series and 
utilized truncated terms in each steps of iteration. The method is illustrated by an example and the 
solutions obtained by this method agree nicely with the exact frequency. Also the solutions give more 
accurate result than other existing results and the method is convergent. 
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1 Introduction 
 
Problem of nonlinear oscillators occupies many researchers. Namely, the nonlinear oscillations occur in 
many real systems from macro to nano in size, and are the basic or auxiliary motions which follow the main 
motion. Thus, nonlinear oscillations are evident in many fields of science, not only in physics, mechanics 
and mathematics but also in electronics, chemistry, biology and astronomy. It has been a research subject of 
intension focus because most of the oscillatory systems are very often governed by a system of nonlinear 
differential equation. To solve this type of problems sometimes it is possible to replace a nonlinear 
differential equation with a related linear equation that approximates the original nonlinear equation closely 
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enough to provide useful results. But such linearization is not always possible or feasible. In this situation 
there are several analytic approaches to find approximate solutions to nonlinear problems. 
 
To deal with problems of nonlinear oscillation systems, the most widely used analytical technique is the 
perturbation method [1,2] which is, in principle, useful if there exist small parameters in the nonlinear 
problems. The parameters are analytically expanded into power series of the parameter. The coefficients of 
the series are found as solutions of a set of linear problems. However, in both science and engineering, there 
exist many nonlinear problems without small parameters. Even if there exists such a parameter, the 
analytical solutions given by the perturbation methods have, in most cases, a small validity. Thus, there are 
many other methods developed for solving nonlinear oscillation systems, including the Krylov-Bogoliubov-
Mtropolskii (KBM) method [3-8], the Lindstedt-Poincare method [9,10] and the multiple scales method [11] 
which is valid even for rather large amplitudes of oscillation. However, it is usually difficult to achieve 
higher-order analytic approximations by using these methods. Recently, the weighted linearization method, 
the modified Lindstedt-Poincare method, power series approach and homotopy analysis method [12-15] 
have been presented for obtaining approximate periods with large amplitude of oscillations. But these 
methods involve tedious derivations and computations, and they are difficult to implement. Further, they are 
applicable only to nonlinear equations with odd nonlinearity.  
 
Another one is harmonic balance (HB) method which provides a general technique for calculating 
approximations to the periodic solutions of differential equations. It corresponds to a truncated Fourier series 
and allows for the systematic determination of the coefficients to the various harmonics and the angular 
frequency. HB method which is originated by Mickens [16] and farther work has been done by Wu [17], 
Gottlieb [18], Hosen [19] and so on for solving the strong nonlinear problems. A new approach, using a 
rational harmonic balance formulation, was introduced by Belendez et al. [20] they demonstrate the utility of 
the procedure by applying it to several nonlinear oscillatory systems. The mathematical foundations of 
harmonic balancing have been investigated by several individuals. The works of Borges et al. [21], Miletta 
[22] and Bobylev et al. [23] provide overviews to various issues concerning convergence and error bounds 
for the approximations to the periodic solutions. 
 
Nowadays iteration method is used widely by some authors like Mickens [24-26], Hu and Tang [27] and 
Haque et al. [28-30] etc. which is valid for small together with large amplitude of oscillation to attain the 
approximate frequency and the harmonious periodic solution of such nonlinear problems. Mickens [24] 
provided a general basis for iteration methods as they are currently used in the calculation of approximations 
to the periodic solutions of nonlinear oscillatory differential equations. A generalization of this work was 
then given by Lim and Wu [31] and this was followed by an additional extension in Mickens. Actually 
iteration method is a technique for calculating approximations to the periodic solutions of the truly nonlinear 
oscillator differential equations which is patented by R.E. Mickens in 1987. 
 
The main purpose of this article is to develop a modification of the iteration technique for the determination 
of approximate solution and angular frequency of inverse cubic nonlinear oscillator. We compare the result 
with existing results obtained by various researchers and it is mentioned that our solution measure better 
results than other existing procedures the method is convergent. 
 

2 The Method 
 
Assume that the nonlinear oscillator 
 

0),( =xxF && ,  (0) , (0) 0,x A x= =&                                                                                     (1) 
 

and further assume that it can be rewritten to the form 
 

,0),( =+ xxfx &&&&                                                                                                                  (2) 

where over dots denote differentiation with respect to time , t . 
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We choose the natural frequency Ω  of this system. Then adding x2Ω  to both sides of Eq. (2), we obtain 
 

),(),( -xx 22 xxGxxfx &&&&&& ≡Ω=Ω+ .                                                                                    (3) 

 
Now, we formulate the iteration scheme as 
 

);,(1
2

1 kkkkk xxGxx &&&& =Ω+ ++  0,1, 2,3,.............,k =                                                        (4) 

 
together with initial condition 
 

).cos()( 00 tAtx Ω=                                                                                                                  (5) 

 

Hence 1+kx  satisfies the initial conditions 

 

1 1(0) , (0) 0.k kx A x+ += =&                                                                                                    (6) 

 

At each stage of the iteration, kΩ  is determined by the requirement that secular terms [1] should not occur 

in the full solution of   )(1 txk+ . 

 

The above procedure gives the sequence of solutions: L),(),(),( 210 txtxtx . 

 
The method can be proceed to any order of approximation; but due to growing algebraic complexity the 
solution is confined to a lower order usually the second [24]. 
 
2.1 Solution procedure 
 
Let us consider the inverse cubic nonlinear oscillator 
 

1/3 0.x x−+ =&&
 

 
1/3.x x−= −&&                                   (7) 

 

Adding x2Ω  on both sides of Eq. (7), we obtain 
 

2 2 1/3 x x- .x x−+ Ω = Ω&&                                                                                                                 (8) 
 

According to Eq. (4), the iteration scheme of Eq. (8) is  
 

2 2 1/3
1 1 .k k k k k kx x x x−

+ ++ Ω =Ω −&&                                                                                                      (9) 
 

The first approximation )(1 tx  and the frequency 0Ω  will be obtained by putting 0=k  in Eq. (9) and 

using Eq. (5), we obtain 
2 2 1/3

1 0 1 0 cos ( cos ) .x x A Aθ θ −+ Ω = Ω −&&                                                                                  (10) 
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where 0 .tθ = Ω
 

 

Now expanding 
3/1)(cos −θ  in a Fourier Cosine series in the interval [0,]π  then Eq. (10) reduces to  

 

(
)

2 2
1 0 1 0 1/3

1
cos 1.426348cos 0.713174cos3 0.509410cos5

0.407528cos7 0.344831cos9 0.301728cos11 .

x x A
A

θ θ θ θ
θ θ θ

+ Ω = Ω − − +

− + −

&&

           

(11) 

 

No secular term in the solution for 1( )x t  requires that the coefficient of the cosθ  term be zero from the 

right hand side of the Eq. (11). Thus we have 
 

0 2/3

1.194298
.

A
Ω =                                                                                                                          (12) 

 
Then solving Eq. (11) and satisfying the initial condition1(0)x A= , we obtain 

 

 
(

)
1( ) 1.052312cos 0.0625cos3 0.014880cos5 0.005952cos7

0.003021cos9 0.001762cos11 .

x t A θ θ θ θ
θ θ

= − + −

+ −
              (13) 

 

This is the first approximate solution of Eq. (8) and the related 1Ω is to be determined. 
 

The value of 1Ω  will be obtained from the solution of 

 
2 2 1/3

2 1 2 1 1 1 .x x x x−+ Ω = Ω −&&                                                                                                  (14) 
 

Substituting 1( )x t  from Eq. (13) into the right hand side of Eq. (14), we obtain 

 

 

(
)

(
)

2 2
2 1 2 1

1/3

1/3

1.052312cos 0.0625cos3 0.014880cos5
0.005952cos7 0.003021cos9 0.001762cos11

1
1.052312cos 0.0625cos3 0.014880cos5

0.005952cos7 0.003021cos9 0.001762cos11 .

x x A

A

θ θ θ
θ θ θ

θ θ θ

θ θ θ −

+ Ω = Ω − +
− + −

− − +

− + −

&&

                         (15) 

 

(
)

(

)

2 2
2 1 2 1

1/3

1.052312cos 0.0625cos3 0.014880cos5

0.005952cos7 0.003021cos9 0.001762cos11

1
1.38767cos 0.644734cos3 0.454911cos5

0.362239cos7 0.306038cos9 0.267895cos11 .

x x A

A

θ θ θ
θ θ θ

θ θ θ

θ θ θ

+ Ω = Ω − +

− + −

− − +

− + −

&&

           (16) 

 
The elimination of secular term from the Eq. (16), we obtain 

1 2/3

1.14834
.

A
Ω =                                                                                                                (17) 
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Then solving Eq. (16) and satisfying initial condition. We obtain the second approximate solution, 
 

( ) (
)

2 1.044512cos 0.053302cos3 0.013203cos5
0.005598cos7 0.002863cos9 0.001678cos11 .

x t A θ θ θ
θ θ θ

= − +
− + −

                                        (18) 

 

The third approximation 3x and the value of 2Ω will be obtained from the solution of 

 
2 2 1/3

3 2 3 2 2 2 .x x x x−+ Ω = Ω −&&
                                                                                                 (19) 

 

Substituting 2( )x t  from Eq. (18) into the right-hand side of Eq. (19), we obtain 
 

(
)

2 2
3 2 3 2

1/3

1/3

1.044512cos 0.053302cos3 0.013203cos5
0.005598cos7 0.002863cos9 0.001678cos11
1

(1.044512cos 0.053302cos3 0.013203cos5

0.005598cos7 0.002863cos9 0.001678cos11 ) .

x x A

A

θ θ θ
θ θ θ

θ θ θ
θ θ θ −

+ Ω = Ω − +
− + −

− − +

− + −

&&

                          (20) 

 

(
)

2 2
3 2 3 2

1/3

1.044512cos 0.053302cos3 0.013203cos5

0.005598cos7 0.002863cos9 0.001678cos11
1

(1.39292cos 0.65307cos3 0.460341cos5

0.366474cos7 0.309581cos9 0.270977cos11 ).

x x A

A

θ θ θ
θ θ θ

θ θ θ

θ θ θ

+ Ω = Ω − +
− + −

− − +

− + −

&&

           (21) 

 
Secular terms can be eliminated if the coefficient of the cosθ  term is set to be zero from the Eq. (21), we 
obtain 
 

2 2/3

1.154799
.

A
Ω =                                                                                                                            (22) 

 

Thus 0 1 2, , ,......Ω Ω Ω  respectively obtained by Eq. (12), (17), (22),…. represents the approximation of 
frequencies of oscillator (7). 
 

3 Results and Discussion 
 
An iterative technique is presented to obtain approximate solution of inverse cubic nonlinear oscillator. In 
order to test the accuracy of the modified approach of iteration method, we compare our results with the 
other existing results from different methods. To show the accuracy, we have calculated the percentage 
errors (denoted by Er%) by the definition 
 

( ) ( )
( ) 100e i

e

A A

A

Ω − Ω
×

Ω
, where 0,1, 2i = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

We have used a modified iteration method to obtaining approximate solutions of the above oscillator. It has 
been shown that, in most of the cases our solution gives significant by better result than other existing 
results. 
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Herein we have calculated the first, second and third approximate frequencies which are denoted by 0Ω , 

1Ω , and 2Ω  respectively. All the results are given in Table 1, to compare the approximate frequencies. We 
have also given the existing results determined by Mickens iteration method [26] and Mickens HB method 
[26]. 
 

Table 1. Comparison of the approximate frequencies with exact frequency eΩ [26] of 

.03/1 =+ −xx&&  
 

Exact frequency eΩ  
2/3

1.154700

A
 

Amplitude 

A  

First approximate 
frequency 

0Ω  

Er(%) 

Second approximate 
frequency 

1Ω  

Er(%) 

Third approximate 
frequency 

2Ω  

Er(%) 
Mickens iteration 
method [26] 2/3

1.08148

A
 

6.3 

2/3

1.07634

A
 

6.78 

2/3

0.988591

A
 

14.38 
Mickens HB method 
[26] 2/3

1.31329

A
 

13.7 

2/3

1.18824

A
 

2.9 

 
_ 

Adopted method 

 
3.43 

2/3

1.14834

A
 

0.55 

2/3

1.154799

A
 

0.0085 
 
In our study in the above table, it is seen that the third-order approximate frequency obtained by adopted 
method is almost same with exact frequency. It is found that, in each of the cases our solution gives 
significantly better result than other existing results. The compensation of this method consists of its 
simplicity, computational efficiency and convergence. It is also observed that the Mickens’ iteration 
technique is convergent for this oscillator. 
 
3.1 Convergence and consistency analysis 
 
The basic idea of iteration methods is to construct a sequence of solutions kx  (as well as frequencies kΩ ) 

that have the property of convergence 
 

ke x
k

x
∞→

=
lim

   or,  ke k
Ω

∞→
=Ω

lim
 

 

Here ex  is the exact solution of the given nonlinear oscillator.  
 
In our technique, it has been shown that the solution gives the less error in each iterative step compared to 

the previous iterative step and finally ε<−=Ω−Ω 154700.1154799.12 e , where ε is a small 

positive number and A  is chosen to be unity. From this, it is clear that the adopted method is convergent. 
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An iterative method of the form represented by Eq. (4) with initial guesses given in Eq. (5) and Eq. (6) is 

said to be consistent if  0
lim

=−
∞→ ek xx

k
   or,   0

lim
=Ω−Ω

∞→ ekk
. 

 
In the present study we observe that  
 

0
lim

=Ω−Ω
∞→ ekk

 as 02 ≈Ω−Ω e . 

 
Thus the consistency of the method is achieved. 
 

4 Conclusion 
 
In this work, we used a simple but effective modification of the iteration method to handle strongly 
nonlinear oscillators. An example is given to illustrate the effectiveness and convenience of this method. The 
results anticipated were compared with the others method. The obtained results show that the modification 
of the iteration method is more accurate than others method and this method is valid for large region. 
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