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Abstract

In this paper, a new reliable algorithm, multistidLaplaceAdomian decomposition method (MLADNM
based on standard Laplace — Adomian method, is presentdgd@dome- fractional financial model fg
both chaotic and non- chaotic. The new algorithm is just aleimodification of Laplace- Adomian
method (LAM). This method is considered as an algorithendaquence of small intervals for obtaining
accurate approximate solutions. The study depicts ligat ADM provides reliable results fdr<<1.
Numerical comparisons between the MLADM and the clakdrimge- Kutta fourth order method (RK#)
in the case of integer-order derivatives solutionsciagis that the MLADM gives better output with high
accuracy and is a promising technique for nonlineaesysf integer and fractional order.

=

Keywords: Laplace Adomian decomposition method; Runge- Kuttéhforder method; Laplace- Adomian
method; Riemann Liouville integral; Chaos theory.

1 Introduction

For the past four decades, a phenomenon called tiasoseen investigated by many researchers including
mathematicians, engineers and others [1,2]. The firsticidsshaotic system was discovered in 1963 by
Lorenz when he studied atmospheric convection [3]. In 1884y introduced the first chaotic circuit which
connects the chaos theory and the nonlinear circuit théor}999, a dual system of Lorenz system was
identified by Chen and Ueta through a technique called cheatitth [4]. In 2002, a new chaotic system was
identified and named as LU system [5]. LU ef{%].put together all the three systems described above into
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one chaotic called unified chaotic system. Chao which yhaeals with behaviour of dynamical systems has
insightful effects on the numerical solutions based omit&i conditions [6,7]. This is sometimes sensitive
to time step sizes with regard to its numerical sohst It has been identified that the majority real life
phenomena and some scientific problem could be modeled byiclsystems of ordinary differential
equations (ODEs). For instance, Chaos theory has been enhployeany fields of endeavour such as
population dynamics, mathematics, biology, computer sciesoapenics engineering, finance, meteorology
and economics [8,9]. Interestingly, many chaotic systerasnot be solved analytically via their
complexities. It is, therefore, prudent to explore the groaf humerical methods to obtain approximation
solutions of such problems. Consider a financial system IL0The system comprise three state variables
as

X=ze(y- 9>

dy

—=1-ey- X 11
p y (1.1)
d—Z:—x— fz

dt

where X, y and Z are the state variabled, e and f are positive real numbers. He denotes the
amount of saving€ represents the cost per investment, and the commercikktmalasticity demand is
denoted by f , i =1,2,3, are parameters dealing with the order of the fractitina derivative in the
Caputo perspective . Clearly, the classical integerrdidancial can be seen as exceptional situation from
fractional —order system by putting, = &, = & ; =1 wherethe chaotic occurs whed = 3,e= 0.1and

f =1. We obtain the following system of fractional time datives equation;

DAx(t) = z+(y—- d) x
D y(t) =1-ey—- X (1.2)
D z(t) =—x- fz

Li and Chen, [12] examined the dynamics of RoOssleraggu in fractional-order generalizations. They
observed in their studies that chaotic behaviour exists aasa?v4 in Rossler equation. Moaddy et al., [13]
studied fractional order dynamics behaviour Rdssler chadtig tise nonstandard finite difference scheme.
The study shows that smallest value that chaotic ot @4

In recent times, Roslan et al. [14] explored Euler’'shroé to obtain solution to chaotic system. Even though
the results obtained led to butterfly- shape but cannot praysdel accuracy. One of the common and
widely used numerical methods is RK4 for simulatinggblition of chaotic system [12,15,16] and has been
mostly used as comparison method [17-20]. There are otherfpbweethods of solving chaotic systems
such as Laplace Adomian decomposition method (LADM) [21,22F fifdthod has been applied in solving
different kinds of differential equations. Unfortunatelyhas some setbacks including most semi- analytic
scheme. By using the LADM, we obtain a series solutiorchwis, essentially a truncated series solution.
This obtained solution does not reveal the real charactsrisfithe given problem but provides a good
approximation to the exact solution in a small area. By dbethat the LADM leads to small convergence
area, a multi-staging technique referred to as the Madgis Laplace Adomian Decomposition Method
(MLADM) is proposed.

In this paper we intend to apply the LADM and MLADM to w»lfinancial system [10,11], using the
concept of fractional calculus for both chaotic and non-cbaecgnarios and compare to fourth order Runge-
Kutta method.
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2 Basic Definitions and Notations

This section deals with a number of basic definitions amdtions of fractional calculus that will help in the
subsequent sections [9].

Definition 1. A function f (X) having the positive values ofis recognized in the spadd, (a UR) if
it is expressed in the fornf (X) = X* f,(X) and for someq >a’, where f,(X) is continuous in[0,00),
and it is known to be in the spa@] if f™ 0D, nON.

Definition 2. The Riemann Liouville integral operator of a given orde> 0 with €= 0O is expressed as

(3P) 09 = )j(x Y d e,
(321) x ¥ &),

(2.1)

For the properties of the operator see [23], we need ihalyfollowing. For p0 B,,a >0,8> 0,
cORandy >-1 one gets

(3292 8)R=(L X )O3=( L7 (¥
x/+a (2.2)

ngy = r( )IB(x—e)/ x(a y )

where 3. (a, y+ 1) characterizes the incomplete beta function stated as

D, (a,y+1) = It”l (1-tYdt,
0

[c(c- o]

o 1= e)azl'(a+k+1)

(2.3)

The Riemann Liouville derivative has some challenges wheneapmireal life situations with fractional
differential equations. Thus, at this point we explonaadified version of fractional differential operator

D: which has been used in Caputo work on the theory of visciog@hast

Definition 3. The Caputo fractional derivative gd( X) of order @ > 0 with &= 0 is expressed as

1 f £ (t)

d 2.4
Fr(m-a) (x-t)rm k @9

(Dg )9 = (a0 1) (9 =
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foo- m—1<ag<m ml N » e f( yO D). Many researchers employed the Caputos fractional
order derivatives fom—-1<ag < m f(x) O D}, anda = -1, one obtains

m-1

(9702 F) (9= 3™ D™ 3= (3= f( e%, 25)

k=0
3 Laplace Adomian Decomposition Method (LADM)

In this section, we present a Laplace Adomian decompositethod for obtaining a solution of differential
equations expressed operator form:

Lu+S(g+ M(y = f (3.1)
with initial condition
u(x 0)=g(x (3.2)

Where L, denotes a first-order differential operatd?, represents a linear operatdy] denotes a non-

linear operator andf provides the source term. We initially explore and applglage transform to both
faces of equation (3.1) and then substitute the initial cdond(8.2).

LLu+URYl+EM Y =LF

(3.3)
sUd-dy=0C1-LP)Y-[LN)U
g =900, Ufl_WROL_ EM a4
S S S S
The infinite series in terms of LADM solution( X, t) is defined as
u(xH)=>"u, (3.5)
The Adomian polynomials technique is used to write thelimaar term which is expressed as [24]:
M(u)=2> A, (3.6)
1 d" .
== M Al 37
A, m!{d/]m[ > q]} (3.7)
By substituting (3.5) and (3.6) into (3.3) leads to:
o L.
Uy =909, MR DA 8
S S S S



Ebenezer et al.; BIMCS, 13(4): 1-14, 2016; ArtiateBIJMCS.22102

Following, (3.8), the following recursive formula can bated:

Llu,] = % + Lsf)] (3.9)
L[ty = -2 PS( Wl _ L[ﬁ“] (3.10)

By carefully taking the inverse Laplace transform tohbebhds of (3.9) and (3.10) we gu;n(mz 0)
subsequently substituted into (3.5).

3.1 Multistage L aplace Adomian Decomposition M ethod (MLADM)

A robust and efficient method is required to provide epppnate solutions to system of differential
equations for largdé (t >> 0) both linear and non-linear, multi- staging the solution ag@gi is one of the
methods.

The interval with which the differential equation (1)w@n is to be determined is made to[5T]. The
solution [0,T] is further divided in M subintervals (m=1,2,........ M Tgiven equal step size
h =T/ M having the interval at end points, = mh.

The LADM scheme is applied initially to determine thergximate solutionsx, y and Z of (1), over the
interval [0,t,] by employing the initial conditiorx(0), y(0) and z(0) in that order. In order to determine

the approximate solution of (1) with respect to the nexrimt [t,,t,], the X(t,), y(t,) and z(t) are
considered as the new initial condition. In general sethe iterative scheme is continued for dmywith
the right endpointx(t._, ), y(t,_,) and z(t_,) at the previous interval being considered as the newliniti

condition for the interva[t,_;,t.] .

4 Application

In this section, we explore and employ the Laplace Adorde&composition method to financial system (1).
The basic procedure of Laplace Adomian decomposition mathasnployed to the fractional financial
model and is expressed as

LID*x] = L[z] + L[xy] — dL[X]

L[D%2y] = L[1] — e L[y] — L[x?] (4.1)

L[D*3z] = — L[x] — fL[z]

s@L[x] —s¥ 1 x(0) = L[z] + L[xy] — dL[x]

s®L[y] —s*7t y(0) = L[1] — e L]y] — L[x?]

s%L[z] — %71 z(0) = — L[x] — fL[z]
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o0 = 224t 4 ) - 2l
£yl = 22+ 1] - = LIyl - = LIx’] 4.2)
=29 Ly ]—LL[]

S S%3

The solution of the financial system takes the form
x(t) = Yo Xn y(@®) = Loty z(t) = XnZn

The non-linear Adomian polynomials are expressed as:

Xy = Z;?An x? = Zﬁ B,

Then (4.2) can be written as a recursive formula inpaterized form as:

ZM x(O) t ZA"Z]+—L[ZA"A ——L[ZA”X]
ZA" —Q S%L[ ——L[ZA"Y]——L ZA"B]

LI Z,) = 52— = LR Y] - L L[5 472, (4.3)

Comparing equal powers @fin equation (4.3), we have:

LX) = X2 LYy = X2+ £z = X2

O b B e BT by @4)
ElXuss] = o £1Z,] + g £1A,] g LIX,]

ElVyaa] = = o 1Y)~ o £15,]

ClZna] = o L1, — 212,

Xur = £ s £12,) + 5 £14a) = - 21%,] (45)

Ypir = L~ [—— L[Y,] _S%L[Bn] ]

—LL[X ]—LL[Z ]

s%3 s%3

Zny1 = Lt
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The system is solved with the initial conditiar{f0) = 2, y(0) = 3 and z(0) = 2. For d = 3, e = 0.1 and

f =1 we have a chaotic system ahé- 2,e = —0.1 andf = 1.6 correspond to a non-chaotic system. The
recursive relations (4.3) and (4.5) are evaluated whieh aid of Mathematica 10.0 version to obtain the
solution up to a 10 terms approximation for the timege [0, 300] with a time step size 0.01. MLADM is
implemented by dividing the solution intenjal 300]

5 Results and Discussion

The chaotic case of the classical finance system bi@sned by applying the LADM and MLADM which is
then implemented in Mathematica 10.0 version, the 21 term@xippate LADM solution was arrived at.
The first few terms of the recursive relation (4.5) ebtained as

XO = 2
3 4+ t®
YO = —7<
rad+a,)
Zy=2
1 t*2
X, =2t" ( + )
! rl+a) T'A+a +ay)
4.3 0.1t%
Yl = taz (_ - )
I'l+a,) TA+2ay)
—4t%3
Zi = —/——<
LTI+ as)
—— 2t (14 a + ay) 0.2 t2%
2 Frl+a)TlA+a)TA+2a;+a,) T'(Q+a;+2a,)
2 t¥1+ 2 (1+aq+2ay)
+ —8.6 +F(1+a2) r(+2as+2a;) | 4t%
rd+a, +a,) T+ a, +a3)
8t*t 0.43 8t*1 0.01 t%
Y, =t ——+t“2( - + )]
rd+a;, +a,) ra+2a,) I'l+a,+2a,) TI'(l1+3ay)
8t 0.43 8t 0.01t%
Y, =t ——+t“2( - + )]
rd+a;, +a,) ra+2a,) TI'(Ql+a,+2a,) T'(1+3ay)
tal ta1+a2 2ta3
Z, =2t | — - +
2 [ Fl+a+a3) T(A+a;+a,+as) T'(1+2as)
into 3000 subinterval§n = 1,2, ... ...... ,3000) of equal step size given lay= 0.1
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For the chaotic cask= 3, e = 0.1 andf = 1, we have the series solution as:

x = 2+ 2t —5.3t% — 4.42333t% + 5.74392t* + 13.3092¢°> — 4.82205t° — 28.4528t7 — 5.57176t®
+ 52.3603t” + 38.865t'° + 96.7929t* + 4.95108t'? — 11.4009t*3 — 1.1977¢**
+ 0.175363t° + 0.019144t% — 0.000347514t'7 — 0.0000423286t'® — 1.74675e
— 10t + 5.38229¢ — 10t2°

y=3-33t— 3.835t% + 5.86117t3 + 9.5768t* — 6.866t> — 20.4022t° + 1.34447t7 + 40.6071t8
+ 18.4081t° — 68.6147t1° + 14.9803t* + 44.9862t'% + 4.17385t*3 — 1.75135¢4
—0.188676t' + 0.0104597t'° + 0.00115873t'7 — 3.16501e — 6t'8 — 5.80154e
— 7t1°

z= 2—4t+t?+1.43333¢% + 0.7475¢* — 1.29828t°> — 2.00182t° + 0.974838t7 + 3.43474¢8
+0.237447t° — 5.25977t% — 0.483038¢** + 2.04308t'2 + 0.258554¢'3
— 0.0481953t* — 0.00576637t1% + 0.000138421¢¢ + 0.0000174021¢%7 + 2.7936¢
— 10t'® — 5.66557¢ — 10t°

The effectiveness and accuracy of the LADM and MLADMtigdged by comparing their solutions to the
RK4 solution for the parameter where the system is ahadth the initial conditionsx(0) = 2,y (0)= 3
and z(0) = 2. The RK4 with time stepAt = 0.01 with the number of significant digits set to 16 is used.

Table 1 presents the absolute errors between the 21-tAlMLsolutions and the 21-term MLADM
solutions ford =3,e= 0.1, f =1 and the RK4 solutions.

Fig. 1. X-Y-Z Phase portrait using 10-teem MLADM on At =0.01ford =3,e=0.1and f =1

In Table 1, we can see that the LADM only provides valalltefor t <<1. The MLADM solutions on the
time stepAt = 0.01 for the chaotic case matches with the RK4 solutions eriithe stegdt =0.01to at
least 4 decimal places. Therefore, for the classioante chaotic system we notice that the MLADM
solutions matches with the RK4 solutions to a significant eegiThe z+ (y— d) X 1- ey~ X and
—X— fz phase portraits for the non-chaotic case is determingdiogimg the 21-term MLADM solutions
are depicted in Fig. 1 to Fig. 4. In Figs. 5, 6 and 7 @vsthe time series plots of the model equations
respectively. These graphs depict oscillatory variationthe time interval of0<t < 30 seconds using
MLADM when d =3, e=0.1 and f =1.
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Fig. 3. Y-Z Phase portrait using 10-term MLADM on At = 0.01ford =3,e=0.1and f =1,
a=1

Fig. 4. X-Z Phase portrait using 10-term MLADM on At =0.01for d =3,e=0.1and f =1,
a=1
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Fig. 6. Y(t) time seriesusing 10-term MLADM ford =3,e=0.1and f=1

Table 1. Absolute differences between 10-term LADM and 10-term MLADM with RK4 solutions

(At=0.01)ford=3,e=0.1andf=1

t

|[LADMgo; - RK4¢ o] IMLADM,9; - RK4¢ ;|

Ax Ay Az Ax Ay Az

0.15 4.623E-10 2.812E-11 3.594E-09 4.623E-10 2.812E-11 3.594E-09
4.43 8.647E-05 1.801E-05 6.452E-04 1.008E-09 1.297E-09 1.512E-09
22.04 1.066E+00 1.166E+00 4594E+00 4.494E-09 8.654E-09 7.228E-10
46.71 5.340E+0: 2.479E+0: 5.249E+0: 4.254EF-10 7.486E-09 1.570E-09

71.13 1.972E+05 2.159E+06 3.763E+06  5.482E-09 2.697E-08 9.049E-09
95.52 3.741E+07 6.570E+08 1.016E+09  2.785E-10 2.058E-08 6.010E-11
120.04 3.169E+09 7.231E+10 1.046E+11 4.052E-10 1.922E-08 1.051E-10
156.33 9.462E+10 2.484E+12 3.468E+12  3.465E-09 1.601E-08 4.111E-09
185.51 2.147E+1 6.196E+1. 8.447E+1. 2.261E-08 1.567E-08 4.535E-08

212.12 9.249E+12 2.767E+14 3.738E+14  1.928E-09 1.130E-08 2.424E-09
278.23 4.314E+13 1.333E+15 1.787E+15 6.767E-10 1.211E-08 2.196E-10

For the non-chaotic cage= 2, e = —0.1 andf = 1.6, we have the series solution as:

x = 2+ 4t —3.3t% — 9.40333t% — 8.87358t* + 14.5722t> + 37.4136t° + 13.0765t” — 70.9391¢®

—119.882t° + 17.3112¢*° — 158.999¢'* — 89.8305¢** — 4.81831¢"3 + 2.84324¢™
+ 0.383951¢° + 0.00429468t¢ — 0.0012362t17 — 0.0000420489¢'8 + 1.70486¢
— 8t'° + 5.38229¢ — 10t2°

10
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y = 3—2.7t—8.135t% — 1.2045¢% + 15.9732t* + 20.2857t> — 7.88893t°® — 59.1442t” — 53.5294¢®
+ 68.4484t° + 210.243t1° + 154.278t'! — 25.6593t1% — 22.3443¢13 — 2.38427t1*
+ 0.145652t*> + 0.0302603t° + 0.00928876t17 — 0.0000171922t*® — 5.80154e
_ 7t19

z= 2-52t+2.16t* - 0.052t% + 2.37163t* + 1.01579t° — 2.69958t° — 4.72776t” — 0.689006¢®
+8.00462t° + 10.7075t'° 4+ 10.8071t™ + 0.721589t** — 0.652907t"3
—0.0998574t'* — 0.000655983t " + 0.00047164t'¢ + 0.0000171717t"7
— 1.58464e — 8% —5.66557¢ — 10t*°

—
RS
~
=
=
=

]
el
%_
—_—
=_
—_—]
—
—

5]
T

Fig. 8. X-Y-Z Phase portrait using 10-term MLADM on At = 0.01ford =2,e=—-0.1and f = 1.6,
a=1

In Table 2, we can also notice that the LADM only provided result fot <<1. The MLADM solutions
for the non-chaotic case is in agreement with the RBEMitisns to at least 4 decimal places. The

z+(y-d x 1- ey X and —x - fz depict the phase portraits for the non-chaotic classicahce
system obtained employing the 21-term MLADM solutions aedshown in Fig. 8 to Fig. 11.

11
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Fig. 9. X-Y Phaseportrait using 10-term MLADM on At = 0.01ford =2,e=—-0.1and f = 1.6,

a=1

Fig. 10. Y-Z Phaseportrait using 10-term MLADM on At =0.01ford =2,e=—-0.1and f = 1.6,

a=1

Table 2. Absolute differences between 10-term LADM and 10-term MLADM with RK4 solutions

(At=10.01)ford=2,e=—-0.1andf=1.6

[LADMg o, - RK4g 4|

IMLADM, ¢; - RK4 04|

t Ax Ay Az Ax Ay Az

0.15 2.407E-10 4.552E-09 6.828E-10 2.407E-10 4.552E-09 6.828E-10
4.43 4.003E-04 1.049E-03 8.516E-05 4.064E-10 3.177E-10 4.378E-10
22.04 1.067E+01 2.777E+00 5.612E-01  7.022E-11 5.363E-10 3.718E-10
46.71 5.788E+0: 6.718E+0: 4.383E+0: 2.435E-10 4.909E-11 4.626E-10

71.13 2.885E+06 4.328E+06 1.786E+05 2.417E-11 1.541E-11 1.839E-11
95.5¢ 6.804E+0:! 1.110E+0! 2.574E+0° 1.224E-09 1.553E-09 9.840E-10
120.04 6.613E+10 1.117E+11 1.381E+09 4.385E-10 1.947E-11 1.583E-10
156.33 2.136E+12 3.668E+12 2.377E+10 8.462E-10 7.770E-10 6.206E-10
185.5: 5.118E+1. 8.884E+1: 2.212E+1. 3.171F11 7.643E-11 3.571F-11
212.12 2.252E+14 3.924E+14 3.903E+11 6.414E-12 9.170E-12 3.612E-11
278.2¢ 1.071E+1! 1.872E+1! 6.907E+1. 1.762E-06 8.250E-06 1.779E-08

12
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Z

1 2 ;\%fz "
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Fig. 11. X-Z Phaseportrait using 10-term MLADM on At =0.01ford =2,e=—-0.1and f = 1.6,
a=1

=]
T

6 Conclusion

In this work, a new numerical technigue to deal with tifnaetional classical financial model is proposed.
The method is a only modification of the standard lapkaemaian method. Comparisons were made
among the LADM, MLADM and the fourth-order Runge- Kutta (RK4gthod. Following the numerical
results obtained in the case of chaotic and non-chd®ié{LADM and RK4 were consistent. However, in
the case of chaotic solution the MLADM performed relativedster than that of RK4.
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