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Abstract

We derive some of the standard results on limits of elementary functions defined on subsets of
real-line, whose rigorous proofs are often avoided in the routine teaching and learning of calculus.
For proofs, we essentially follow the Weierstrass’s systematized modern formalization of Cauchy’s
idea of transforming the concept of limit into “the algebra of inequalities”.
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1 Introduction

Calculus has found highest place in modern science since its main discoveries by Newton and Leibniz,
and its rigorous development by Cauchy, Weierstrass, and Riemann [1, 2]. In fact, the essence of
calculus is well described in the following mesmerizing quote by John von Neumann [3].
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“The calculus was the first achievement of modern mathematics and it is difficult
to overestimate its importance. I think it defines more unequivocally than anything
else the inception of modern mathematics, and the system of mathematical analysis,
which is its logical development, still constitutes the greatest technical advance in
exact thinking.”

However, the students often find the subject difficult. One reason behind their difficulty may be that
the rigorous treatment of the subject matter is often avoided by their calculus teacher during school
and college studies. For instance, the students often come across the following simple calculation
on limit, when the calculus is just introduced to them.

lim
x → 1
(x ̸= 1)

x2 − 1

x− 1
= lim

x → 1
(x ̸= 1)

(x− 1)(x+ 1)

x− 1
= lim

x → 1
(x ̸= 1)

x+ 1 = (x = 1) + 1 = 2, (1.1)

where x ̸= 1 is assumed until the last step, and then, suddenly, x = 1 is used to get the limit equal
to 2. The use of x = 1 in (1.1) can be explained rigorously by using the ϵ−δ definition of limit, that
is, we may consider for a given real number ϵ > 0, |x + 1 − 2| = |x − 1| < ϵ for |x − 1| < δ, where
we choose δ = ϵ. Alternatively, the function defined by g(x) = x + 1 is continuous at point x = 1
so that limx→1 g(x) = g(1). However, here, the continuity of the function g must be established by
a mean independent of the concept of limit, which can be done using Cauchy’s idea of continuity
via convergence.

As an another example, if a student is not exposed to the rigorous treatment of the subject, he never

seems to have understood why limx→∞

(
1 + 1

x

)x
is different from 1? or why it exists at all? The

real problem arises when such a freshman enters University for graduate studies, and the proofs of
many such standard limits are often presumed by his calculus Professor. So, even after completing
his post-graduation in Mathematics, he lacks the firm foundation in calculus. In this regard, the
present exposition may be helpful to the one who is looking for the proofs of standard results on
limits at one place, which otherwise are not done in lectures, and many of them are left as exercises
in the textbooks on calculus.

Throughout, the reader is assumed to have some familiarity with the algebraic properties and
the order properties of real-line such as “the least upper bound property” and “the archimedean
property”. The symbols N, Q+, Q, R+, and R denote the set of positive integers, the set of all
positive rational numbers, the set of all rational numbers, the set of all positive real numbers, and
the set of all real numbers, respectively. A subset A of R is said to be bounded above if there is a
real number M , such that a ≤ M for all a ∈ A. Such a real number M is called an upper bound
of the set A, and a real number α is said to be supremum of the set A (provided it exists) denoted
supA if (i) α is an upper bound of A, and (ii) if β < α then, β is not an upper bound of A. The
set A is said to be bounded below if there is a real number m, such that m ≤ a for all a ∈ A. Such
a real number m is called a lower bound of the set A, and a real number γ is said to be infimum
of A (provided it exists) denoted inf A if (i) γ is a lower bound of A, and (ii) if γ < µ then, µ is
not a lower bound of A. A subset of R is called bounded if it is both bounded above as well as
bounded below. By the completeness property of real-line, if a set of real numbers A is bounded
above (bounded below), then, supA (inf A) always exists in R. The archimedean property says that
for any two positive real numbers x and y satisfying x < y, there exists a positive integer n, such
that y < nx [4, 5].

If S ⊂ R, which is bounded above, then the real number supS is unique. To see this, let α = supS
and β = supS. If α < β, then, β being supS, α is not an upper bound of S, which is absurd since
α = supS. So, α ≥ β. On applying the same argument after interchanging α and β, we will get
β ≥ α. So, α = β. Similarly, if inf S exists then it is unique.
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Before proving the next result, we will establish equality of given two real numbers via an inequality.
We assert that for any x, y ∈ R, x = y if and only if the difference |x − y| can be made as small
as we wish, that is, for every ϵ > 0, |x − y| < ϵ. For proof, if x = y then |x − y| = 0 < ϵ holds.
Conversely, suppose |x− y| < ϵ for every ϵ > 0. If possible, let |x− y| > 0. We take ϵ = |x− y| and
apply the given hypothesis to get |x− y| < ϵ = |x− y| or 1 < 1, which is absurd. So, x = y.

We also need the Bernoulli inequality, which we state as follows. For any real number t > −1,

(1 + t)n ≥ (1 + nt), (1.2)

for all n ∈ N, which can be proved using induction on n.

2 Preliminaries

Theorem 2.1 (Existence of nth root). Let x ∈ R+, and let n ∈ N. Then there exists exactly
one y ∈ R+, such that yn = x.

Proof. Let S = {y | yn ≤ x, y ∈ R+}. As 0 < x
1+x

< 1, we have
(

x
1+x

)n
< x

1+x
< x, which shows

that
(

x
1+x

)
∈ S. So, S ̸= ∅. By Bernoulli’s inequality, (1 + x)n ≥ (1 + nx) ≥ (1 + ntn) > ntn > tn

for all t ∈ S, which shows that the set S is bounded above. By the least upper bound property, let
α = supS. Note that α > 0. We will show that αn = x. So, let ϵ > 0 be given. It will be enough
to show that |x− αn| < ϵ.

If k is any positive integer satisfying α > 1
k
, we will show that | x

αn − 1| < c
k
, for some fixed positive

real number c. For proof, observe that
(
α − 1

k

)
is not an upper bound of S. So, there is some

t ∈ S, such that 0 <
(
α − 1

k

)
< t, which gives

(
α − 1

k

)n
< tn ≤ x, that is,

(
α − 1

k

)
∈ S. Also,

α <
(
α+ 1

k

)
, which implies

(
α+ 1

k

)
̸∈ S. So,

(
α+ 1

k

)n
> x. Now we have

(
α− 1

k

)n
< x <

(
α+ 1

k

)n
or
(
1 − 1

kα

)n
< x

αn <
(
1 + 1

kα

)n
. Thus, − g(k)

k
< − g(−k)

k
<
(

x
αn − 1

)
< g(k)

k
, where we define

g(k) = k{
(
1 + 1

kα

)n − 1} > 0, which satisfies g(−k) < g(k), and g(k) = 1
α

∑n
i=1

(
n
i

)
1

(kα)i−1 <
1
α

∑n
i=1

(
n
i

)
1 = g(1/α), since 1

kα
< 1. So, we have

∣∣ x
αn − 1

∣∣ < c
k
, where we take c = g(1/α).

By archimedean property, choose a positive integer N , such that g(1/α)
N

< ϵ and α > 1
N
. Then we

have
∣∣ x
αn − 1

∣∣ < g(1/α)
N

< ϵ. So, x
αn = 1 or αn = x.

Now, if β is another positive real number, such that βn = x, then it is clear that β = supS ⇒
α = β.

Definition 2.1 (nth positive root). For x ∈ R+ and n ∈ N, if α ∈ R+, such that αn = x, we call
α = n

√
x the nth positive root of x. Further, if p

q
∈ Q, q > 0, we define the rational exponentiation

of x by the rational number p
q
to be the real number x

p
q = ( q

√
x)p.

Let x be a positive real number, and let n ∈ N. Let y be the positive real number, such that
y = n

√
x. By the above definition, yn = x, and we have

(x− 1) = (yn − 1) = (y − 1)(yn−1 + yn−2 + . . .+ y + 1), (2.1)

which shows that x > 1 if and only if y > 1, and 0 < x < 1 if and only if 0 < y < 1, since
(yn−1 + yn−2 + . . .+ y + 1) > 0 for y > 0.

Also note that xn/n = ( n
√
x)n = αn = x. If a = p

q
and b = m

n
, where |p|, |m|, q, n ∈ N, then

xa+b = x
pn+qm

qn = ( qn
√
x)pn+qm = ( qn

√
x)pn( qn

√
x)qm = x

pn
qn x

qm
qn = x

p
q x

m
n = xaxb. Also, if x

p
q = y

then yq = (( q
√
x)p)q = (( q

√
x)pq = (( q

√
x)q)p = xp. Now if we let xa = y and yb = z so that z = (xa)b
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then, xp = yq and ym = zn, which implies xpm = yqm = zqn, from which we obtain z = x
pm
qn = xab.

Thus, the laws of rational exponentiation xa+b = xaxb and (xa)b = xab hold for all a, b ∈ Q. It is
also easy to show that for x, y ∈ R+, (xy)

a = xaya for all a ∈ Q.

2.1 Convergence

A sequence of real numbers is a map x : N → R, where for each n, x(n) denoted xn is called the
n-th term of the sequence. The sequence x is denoted by {xn}. A sequence {xn} is said to be
(i) monotonically increasing if xn ≤ xn+1 and (ii) monotonically decreasing if xn ≥ xn+1 for all
n ∈ N. A sequence which is either monotonically increasing or monotonically decreasing, is called
a monotonic sequence. A strictly increasing (decreasing) sequence can be defined in a similar way
by requiring strict inequality <(>) between its consecutive terms.

Definition 2.2 (Convergence). A sequence of real numbers {xn} is said to converge to a real
number x, if for a given ϵ > 0, there is a positive integer N , such that |xn − x| < ϵ for all n ≥ N .

If the sequence of real numbers {xn} converges to x, we express this as xn → x and write x =
limn→∞ xn.

Convergence of sequences in R is unique in the sense that if xn → x and xn → y in R, then
x = y. For proof, let ϵ > 0 be given. Choose N1, N2 ∈ N, such that |xn − x| < ϵ/2 for all n ≥ N1

and |xn − y| < ϵ/2 for all n ≥ N2. Define N = max{N1, N2}. Then for all n ≥ N , we have
|x− y| = |x− xn + xn − y| ≤ |x− xn|+ |yn − y| < ϵ

2
+ ϵ

2
= ϵ. So, x = y.

It is useful to note that in order to establish that the given sequence {xn} converges to the real
number x, it is sufficient to take 0 < ϵ < 1 and find N corresponding to ϵ, such that|xn − x| < ϵ for
all n ≥ N .

The following standard result can be proved easily.

Lemma 2.2. Let {xn} and {yn} be two sequences in R, and let x, y ∈ R.
(a) If xn → x and yn → y then (xn + yn) → x+ y, and (cxn) → cx for any fixed c ∈ R.
(b) If xn → x and yn → y then (xnyn) → xy.

(c) If xn → x, and x ̸= 0 then
(

1
xn

)
→ 1

x
, where it is understood that 1

xn
is defined whenever

xn ̸= 0.

Theorem 2.3. A monotonic sequence of real numbers is convergent if and only if it is bounded.

Proof. Without loss of generality, let {xn} be a monotonically increasing sequence of real numbers.
If xn → x for some x ∈ R then there is a k ∈ N, such that |xn − x| < 1 or x− 1 < xn < x+1 for all
n ≥ k. Define m = inf{x− 1, x1, . . . , xk−1} and M = sup{x− 1, x1, . . . , xk−1}. Then m ≤ xn ≤ M
for all n, which proves that {xn} is bounded.

Conversely, let {xn} be bounded. Let α = sup{xn}, and let ϵ > 0 be given. Then α− ϵ < α, so that
α− ϵ is not an upper bound of {xn}. Then there is a positive integer N , such that α− ϵ < xN ≤ α.
Since xN ≤ xN+1 ≤ . . ., and xn ≤ α for all n, we have |xn − α| < ϵ for all n ≥ N , which proves
that xn → α.

Remark 2.1. The proof of Theorem 2.3 shows that if {xn} is a monotonically increasing, bounded
sequence of real numbers, then xn → supn{xn}. A similar observation can be made for a monotonically
decreasing, bounded sequence {yn} of real numbers, which will converge to infn{yn}.
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Example 2.4. For 0 < x < 1 and k ∈ N, consider the sequence {xn}, n ∈ N, where xn = nkxn.

Note that nkxn − (n + 1)kxn+1 = nkxn
(
1−

(
1 + 1

n

)k
x
)
> 0 for n > Nx :=

k√x

1− k√x
, which proves

that the given sequence is strictly decreasing for all n > Nx, and is bounded below by 0. So, by
Theorem 2.3, the given sequence is convergent.

Alternatively, let x = 1
(1+y)k+1 , and consider the following using (1.2)

(1 + y)n(k+1) ≥ (1 + ny)k+1 > (ny)k+1, (2.2)

which gives 0 < nk(1 + y)−n(k+1) < 1
yk+1

1
n

or 0 < nkxn < M(k, x) 1
n
, where

M(k, x) =
x

(1− x1/(k+1))k+1
> 0.

Now for any ϵ > 0, choose N ∈ N, such that M(k, x) < Nϵ. Then for all n ≥ N , nkxn <
M(k, x) 1

N
< ϵ. So, xn → 0.

Example 2.5. The sequence {xn}, where 0 < |x| < 1 converges to 0. For proof, let ϵ > 0 be given.
Since (1−|x|) > 0, by archimedean property, find N ∈ N, such that 0 < 1

n
< (1−|x|)ϵ for all n ≥ N .

Now use Bernoulli’s inequality to obtain 1
|x|n =

(
1 + 1

|x| − 1
)n

≥ 1 + n
(

1
|x| − 1

)
> n

(
1
|x| − 1

)
. So,

we have 0 < |xn| < |x|
n(1−|x|) < 1

n(1−|x|) < ϵ for all n ≥ N . Thus, xn → 0.

Example 2.6. Let r ∈ R, where 0 < |r| < 1, and let xn = 1+ r+ . . .+ rn−1 for each n ∈ N. Since
rn → 0, choose N ∈ N, such that |rn| < (1 − r)ϵ for all n ≥ N . Now consider the following for

n ≥ N , |xn − 1
1−r

| = |
∑n−1

m=0 r
m − 1

1−r
| = | 1−rn

1−r
− 1

1−r
| = |r|n

1−r
< (1−r)ϵ

1−r
= ϵ. So, xn → 1

1−r
.

2.2 Continuity and limit

Let A and B be two nonempty subsets of R.

Definition 2.3 (Continuity). A map f : A → B is said to be continuous at a point x ∈ A if for
every sequence {xn} in A, such that xn → x implies f(xn) → f(x).

Definition 2.4 (Limit point). A point p ∈ R is said to be a limit point of the set A if for every
δ > 0, there is at least one x ∈ A, such that 0 < |x− p| < δ.

Definition 2.5 (Limit). Let a ∈ R be a limit point of A. The map f : A → B is said to have a
limit L at the point a if for every ϵ > 0, there exists a real number δ > 0, such that x ∈ A and
0 < |x− a| < δ implies |f(x)− L| < ϵ. We express this as L = limx→a f(x).

The map f : A → B is said to have L as its left hand limit at the point a ∈ R if for every ϵ > 0,
there exists a real number δ > 0, such that x ∈ A and −δ < (x − a) < 0 implies |f(x) − L| < ϵ.
We express this as L = limx→a− f(x). Similarly, f is said to have L as its right hand limit at a if
for every ϵ > 0, there exists a real number δ > 0, such that x ∈ A and 0 < (x − a) < δ implies
|f(x)− L| < ϵ, which is expressed as L = limx→a+ f(x).

Observe from the above definitions that limx→a f(x) exists if and only if both limx→a− f(x) as well
as limx→a+ f(x) exist and are equal.

Also note that limit of a function is defined only at a limit point of its domain set. To this, the
following equivalence of continuity and limit can be obtained.

Theorem 2.7. (Continuity via Limit) Let a ∈ R be a limit point of A and a ∈ A. The function
f : A → B is continuous at the point a if and only if limx→a f(x) = f(a).

5
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Proof. Let f be continuous. If possible, let there be some ϵ > 0, such that for any δ > 0, there is
some point xδ ∈ A, which satisfies 0 < |xδ − a| < δ but |f(xδ) − f(a)| ≥ ϵ. In particular, for this
ϵ > 0 and for any n ∈ N, there exist xn ∈ A, such that |xn − a| < 1

n
but |f(xn)− f(a)| ≥ ϵ, which

shows that xn → a but f(xn) ̸→ f(a) thereby contradicting the continuity of f at a.

Conversely, let for a given ϵ > 0, there is a real number δ > 0, such that |x − a| < δ implies
|f(x)− f(a)| < ϵ. Let {xn} be a sequence of points of A converging to a. Choose N ∈ N, such that
|xn − a| < δ for all n ≥ N . By the hypothesis, we have |f(xn) − f(a)| < ϵ for all n ≥ N , that is,
f(xn) → f(a) as desired.

Definition 2.6. Let S be a nonempty subset of R, and let f : S → R and g : S → R. Define
(f + g) : S → R and (fg) : S → R to be the sum and product of the functions f and g, respectively,
such that (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for all x ∈ S. We also define for any
c ∈ R, the function (cf) : S → R, where (cf)(x) = cf(x). If g(x) ̸= 0 for all x ∈ S, we define
1
g
: S → R by 1

g
(x) = 1

g(x)
.

It is easy to observe that if limx→a f(x) = L1 and limx→a g(x) = L2, then limx→a(f+g)(x) = L1+L2

and limx→a(fg)(x) = L1L2. Also, if L2 ̸= 0, then limx→a

(
1
g

)
(x) = 1

L2
. From this discussion, the

following results can be easily deduced.

Theorem 2.8. Let S be a nonempty subset of R, and let f : S → R and g : S → R be two
continuous functions. Then

(a) the functions f + g and cf for any fixed c ∈ R are both continuous.
(b) the function fg is continuous.
(c) if g(x) ̸= 0 for all x ∈ S then the function 1

g
is continuous.

Let f : A → B, and g : B → C be two continuous maps, where A,B,C ⊆ R. Then the composite
map (g ◦ f) : A → C, where (g ◦ f)(x) = g(f(x)) is continuous. For proof, let x ∈ S, and let
xn → x in S. By continuity of f , we have f(xn) → f(x). Now by continuity of g, we have
(g ◦ f)(xn) = g(f(xn)) → g(f(x)) = (g ◦ f)(x). So, g ◦ f is continuous. Now we have the following.

Theorem 2.9. Let A,B,C ⊂ R, and let f : A → B. If g : B → C is continuous, and limx→a f(x) =
L ∈ B for some a ∈ R, then limx→a(g ◦ f)(x) exists. Moreover, we have limx→a(g ◦ f)(x) =
g(limx→a f(x)).

3 Revisiting Continuity and Limit Via Convergence

Lemma 3.1. If pn = 1
2n

for all n ∈ N, then for any real number x, sin(pnx) → 0.

Proof. First note from Bernoulli inequality that 2n = (1 + 1)n ≥ (1 + n) or 2n > n. So, pn < 1
n

for all n ∈ N. Also, for every ϵ > 0, by archimedean property of R, there is a positive integer N ,
such that 1

N
< ϵ. Since pN < 1

N
, we have pN < ϵ. We have shown that for any ϵ > 0, there exists

a positive integer N , such that pN < ϵ.

Now for −π/2 ≤ x < y ≤ π/2, we have (sinx− sin y) = −2 sin
(

y−x
2

)
cos
(

y+x
2

)
< 0, since (y−x) ∈

[0, π] and (y + x) ∈ [−π, π], which proves that sin function is strictly increasing on [−π/2, π/2].
Choose N ∈ N, such that pN |x| < 1 < π/2. So, 1 > sin(pN |x|) > sin(pN+1|x|) > . . . > 0. By
Remark after Theorem 2.3, the sequence {sin(pn+N |x|)} converges to β = infn∈N{sin(pn+N |x|)}.
Clearly, β ≥ 0. If possible, let 0 < β < 1. Since sin : (0, π/2) → (0, 1) is invertible, choose
α ∈ (0, π/2), such that sinα = β. Choose m large enough, such that pm|x| < α. So, sin(pm+N |x|) <
sinα = β, which is a contradiction to the fact that β is the inf of the set {sin(pn+N |x|) | n ∈ N}.
Thus, β = 0, which proves that sin(pnx) → 0.

6
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Theorem 3.2. (a) lim
x→0

sinx = 0.

(b) If {xn} is a sequence of real numbers, such that xn → x then sin(xn) → sinx.
(c) sin function is continuous.
(d) cos function is continuous.

Proof. Let ϵ > 0 be given. By Lemma 3.1, choose N ∈ N, such that sin pn < ϵ for all n ≥ N .

Now, 0 < |t| < pN < 1 < π
2
implies sin |t| < sin pN < ϵ. But sin |t| = | sin t| for all t ∈ [−π

2
, π
2
]. So,

limt→0 sin t = 0, which proves (a).

For the proof of (b), observe that |xn − x| → 0. So, there is a positive integer k, such that
0 < |xn − x| < pN , where N is as chosen in (a) for all n ≥ k. By (a), we have

0 < |xn − x| < pN < 1 ⇒ sin
( |xn − x|

2

)
< sin

(pN
2

)
= sin pN+1 < ϵ, (3.1)

for all n ≥ k, as pN
2

= 1
2N+1 = pN+1. Now consider for n ≥ k,

| sinxn − sinx| =
∣∣∣2 sin(xn − x

2

)
cos
(xn + x

2

)∣∣∣
≤ 2 sin

(
|xn − x|

2

)
≤ 2 sin

(pN
2

)
< 2ϵ,

(3.2)

where the last inequality follows from (3.1). So, sinxn → sinx, which proves (b).

By definition of continuity, (b) implies (c).

Finally, (d) follows from (c), since cos = sin ◦f , where f(x) = π
2
− x, and composition of two

continuous functions is continuous.

Theorem 3.3. (a) The function f : R → R, where f(x) = xk, k ∈ N is continuous.
(b) The function g : R+ → R, where g(x) = x1/k, k ∈ N is continuous.

Proof. (a) Let xn → x in R. By Lemma 2.2(b), xk
n → xk or f(xn) → f(x). So, the map f is

continuous at x.
(b) Let ϵ > 0 be given, and let x ∈ R+. Let {xn} be a sequence in R+, such that xn → x. So,

we can choose N ∈ N, such that |xn − x| < ϵx1− 1
k for all n ≥ N . Also, x− xn = (x1/k − x

1/k
n )yn,

where yn =
∑k

i=1 x
k−i
k x

i−1
k

n . Since x, xn ∈ R+, we have yn > x1− 1
k or y−1

n < x−1+ 1
k for all n. With

these, we have |x1/k − x
1/k
n | = |x− xn|y−1

n < |x− xn|x−1+ 1
k < ϵ, for all n ≥ N . So, f is continuous

at x.

Corollary 3.4. The function f : R+ → R, such that f(x) = xr, r ∈ Q is continuous.

Proof. Let r = p
q
, where p, q ∈ N. By Theorem 3.3(b), the map defined by x 7→ x1/q is continuous,

and by Theorem 3.3(a), the map defined by y 7→ yp is continuous. Composing these maps gives the
desired continuous function.

Theorem 3.5. Let r > 1 and 0 < s < 1 be two rational numbers. Then for x > y > 0, x, y ∈ R,
rxr−1(x− y) > xr − yr > ryr−1(x− y) and sxs−1(x− y) < xs − ys < sys−1(x− y).

Proof. We will prove the result for the case r > 1. The inequality for 0 < s < 1 can be proved the
same way.

For α > 0 and q ∈ Q+, let us define

fq(α) =
αq − 1

(α− 1)q
. (3.3)

7
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First, we show that for q ∈ N, fq(α) < fq+1(α) for α > 1, and fq(α) > fq+1(α) for 0 < α < 1. For
proof, we observe that for α > 1, fq(α) < αq, and for 0 < α < 1, fq(α) > αq. These inequalities

along with fq+1(α) =
1+α+...+αq

q+1
= q

q+1

(
fq(α) +

αq

q

)
establish the claim.

Now we show that for u, v ∈ Q+, u < v implies fu(α) < fv(α) for α > 1, and u < v implies
fu(α) > fv(α) for 0 < α < 1. So, let u = p

q
and v = ℓ

m
, where p, q, ℓ,m ∈ N. First assume that

α > 1. Now u < v implies p
q
< ℓ

m
, which gives pm < qℓ. Since α > 1, qm

√
α > 1. As proved earlier,

we have fpm( qm
√
α) < fqℓ( qm

√
α), which gives αpm/(qm)−1

( qm√α−1)pm
< αqℓ/(qm)−1

( qm√α−1)qℓ
or αp/q−1

p/q
< αℓ/m−1

ℓ/m
. So,

fu(α) < fv(α), which proves the assertion for α > 1. The proof for the case 0 < α < 1 follows the
same way.

Next we establish that for q ∈ Q+, q > 1, we have (αq − 1) < qαq−1(α − 1) for all α > 0. For
proof, assume α > 1. As proved in the preceding paragraph, we have f1(1/α) > fq(1/α), which
gives (1− α)q > α1−q(1− αq) or (αq − 1) < qαq−1(α− 1). On the other hand if 0 < α < 1, again
as before, f1(1/α) < fq(1/α), which gives (1− αq) > qαq−1(1− α) as desired.

Finally, use the inequality αq − 1 < qαq−1(α − 1) for α = x/y, β = y/x, and q = r to obtain
xr − yr < rxr−1(x− y) and xr − yr > ryr−1(x− y), respectively.

Theorem 3.6. The following results hold for any real number a > 0.

(a) a1/n → 1.
(b) The function f : Q → R, where f(q) = aq is continuous.
(c) For x ∈ R, if {qn} is a sequence of rational numbers, such that qn → x, then the sequence

{aqn} converges.

Proof. (a) First assume that a > 1, so that a1/n > 1 for all n, and the sequence {a1/n} is strictly
decreasing. By Theorem 2.3, the sequence {a1/n} converges. Let xn = (a1/n − 1). Using Bernoulli
inequality, we have a = (1 + xn)

n > (1 + nxn), since xn > 0. So, 0 < xn < a−1
n

for all n. Now
for a given ϵ > 0, choose N ∈ N, such that a−1

N
< ϵ, so that xn < ϵ for all n ≥ N . Thus, xn → 0

or a1/n → 1. On the other hand if 0 < a < 1, then, as proved above, 1

a1/n =
(

1
a

)1/n
→ 1. So, by

Lemma 2.2(c), a1/n → 1.

(b) Let us assume first that a > 1. Let qn → q ∈ Q, where {qn} is a sequence of rational numbers.
Let ϵ > 0 be given. By (a), choose N1 ∈ N, such that |a1/n − 1| < ϵ

aq and |a−1/n − 1| < ϵ
aq

for all n ≥ N1. Since qn → q, choose N2 ∈ N, such that |qn − q| < 1
N1

for all n ≥ N2. Define
N = max{N1, N2}. Using these inequalities for all n ≥ N and the fact that a > 1, we have
− ϵ

aq <
(
a−1/N1 − 1

)
<
(
aqn−q − 1

)
<
(
a1/N1 − 1

)
< ϵ

aq , which gives,
∣∣aqn−q − 1

∣∣ < ϵ
aq . So, we have

the following for all n ≥ N

|aqn − aq| = aq|aqn−q − 1| < aq ϵ

aq
= ϵ, (3.4)

which proves continuity of f at q for the case a > 1.

For a = 1, f(q) = 1, which being the constant map is continuous.

For 0 < a < 1, 1
a
> 1, so that the map defined by q 7→ 1

aq is continuous. Thus, qn → q in Q implies
1

aqn → 1
aq , which by Lemma 2.2(c) gives aqn → aq. So, in this case also, f is continuous.

(c) We will prove the case a > 1. Let ϵ > 0 be given. Choose a monotonic sequence {pn} of rational
numbers, with pn ∈

(
x− 1

n
, x− 1

n+1

)
for all n ∈ N. Then |pn−x| ≤ 1

n(n+1)
< 1

n
for all n ∈ N, which

shows that pn → x. Moreover, the sequence {apn} is strictly increasing and bounded above by aq,

8
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where q is a rational number satisfying x ≤ q. By Theorem 2.3, the sequence {apn} is convergent.
Now define sn = qn − pn, so that sn → 0. By (b), asn → a0 = 1. By Lemma 2.2(b), the sequence
{asnapn} converges, which is precisely the sequence {aqn}.

Definition 3.1 (Real exponentiation). For a > 0, and x ∈ R, let {qn} is a sequence of rational
numbers, such that qn → x. Define ax = limn→∞ aqn . The map defined by x 7→ ax is called real
exponentiation.

Note that the above definition does not depend upon the sequence {qn} chosen as if {q′n} is another
sequence of rational numbers converging to q, then sn = (qn − q′n) → 0 so that {asn} → 1 ⇒{

aqn

aq′n

}
→ 1.

Theorem 3.7. Let g : R → R have the property that for a given r ∈ R, any sequence {qn} of
rational numbers with qn → r implies g(qn) → g(r), then the function g is continuous at r.

Proof. Let ϵ > 0 be given. Let {rn} be a sequence of real numbers converging to r. For each fixed n,
let {qn,m} be a sequence of rational numbers converging to rn. So, we can choose Mn ∈ N, such that
|rn−qn,m| < 1

n
and |g(rn)−g(qn,m)| < 1

n
for all m ≥ Mn. Now |r−qn,Mn | ≤ |r−rn|+|rn−qn,Mn | <

|r − rn| + 1
n

for all n, which shows that limn→∞ qn,Mn = r. Now by hypothesis, g(qn,Mn) → g(r).
Thus, we have |g(rn)− g(r)| ≤ |g(rn)− g(qn,Mn)|+ |g(qn,Mn)− g(r)| <

(
1
n
+ |g(qn,Mn)− g(r)|

)
for

all n, which proves that g(rn) → g(r). So, g is continuous at r.

Corollary 3.8. For fixed a ∈ R+, the function defined by x 7→ ax for all x ∈ R is continuous.

Proof. Follows from Theorem 3.7 and definition of real exponentiation.

For a > 0 and x, y ∈ R, if pn → x, qn → y, where {pn} and {qn} are sequences of rational
numbers, then, by definition, apn → ax and aqn → ay. By Lemma 2.2(a), (pn + qn) → (x +
y), so that apn+qn → ax+y. So, ax+y = limn→∞ apn+qn = limn→∞(apnaqn). By Lemma 2.2,
limn→∞(apnaqn) =

(
limn→∞ apn

)(
limn→∞ aqn

)
= axay. So, ax+y = axay.

Let sm,n = apmqn , for all m,n ∈ N. By Corollary 3.4, apm → ax implies sm,n = (apm)qn → (ax)qn

as m → ∞. Also, by Corollary 3.8, sm,n = (aqn)pm → (aqn)x as m → ∞. But sm,n = aqnpm →
aqnx. By uniqueness of convergence, we have (aqn)x = (ax)qn = aqnx. So, by Corollary 3.8,
axqn = (ax)qn → (ax)y. Applying Corollary 3.8 again, (xqn) → (xy) implies axqn → axy. By
uniqueness of the convergence, (ax)y = axy.

Finally, if b > 0 is another real number then (ab)pn = apnbpn . By Corollary 3.8, (ab)pn → (ab)x,
while apn → ax and bpn → bx. Now by Lemma 2.2(b) (apnbpn) → (axbx). By uniqueness of
convergence (ab)x = axbx.

Theorem 3.9. For a > 0, limk→∞ k( k
√
a− 1) exists.

Proof. If a = 1, the sequence {k( k
√
a − 1)} is the constant sequence {0} which always converges.

So, let a ̸= 1.

In view of Theorem 3.5, we have k( k
√
a − 1) = a1/k−1

1/k
= gk(a). Note that gk(a) = (a − 1)f1/k(a),

where f1/k is as in (3.3), so that the sequence {gk(a)} is monotonic. If a > 1, apply Theorem 3.5

for x = a, y = 1, s = 1/k, k > 1, so that 1
k
a

1
k
−1(a − 1) < (a − 1)

f1/k(a)

k
< 1

k
(a − 1), which gives

a
1
k
−1(a− 1) < gk(a) < (a− 1).

On the other hand if 0 < a < 1, apply Theorem 3.5 for x = 1, y = a, s = 1/k, k > 1, so that
1
k
(1 − a) < −(a − 1)

f1/k(a)

k
< 1

k
a

1
k
−1(1 − a), which gives a

1
k
−1(a − 1) < (a − 1)f1/k(a) < (a − 1).

9
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So, for all real positive a ̸= 1 and k > 1, k
√
a(1− 1

a
) < gk(a) < (a− 1). Now if k > 1 then k

√
a > 1

for a > 1, and 0 < k
√
a < 1 for 0 < a < 1. So, for a > 1, (1 − 1

a
) < k

√
a(1 − 1

a
) and for 0 < a < 1,

(1 − a) < (1−a)
k√a

or k
√
a(1 − a) < (1 − a) or k

√
a(1 − 1

a
) > (1− 1

a
). Hence, we have gk(a) > (1 − 1

a
)

for all k > 1. Thus, the sequence {gk(a)} is monotonically decreasing and is bounded below, which
by Theorem 2.3 converges.

Definition 3.2 (Logarithmic function). Let log : R+ → R, such that

log a = lim
k→∞

k( k
√
a− 1). (3.5)

The number log a is called the logarithm of a, and the function log is called the logarithmic function.

From the proof of Theorem 3.9, observe that for any a ∈ R+, and k ∈ N, we have the following
important inequalities (

1− 1

a

)
≤ log a ≤ f1/k(a) ≤ (a− 1), (3.6)

as log a = infk{k( k
√
a− 1)}.

Example 3.10. We may use (3.6) to show that

lim
x→0

log(1 + x)

x
= 1. (3.7)

So, let ϵ > 0 be given. Let 1 + x = a, so that x → 0 implies a → 1. Consider | 1
a
− 1| = |a−1|

a
< ϵ

for 0 < |a − 1| < δ = aϵ. We also have limx→0
log(1+x)

x
= lima→1

log a
a−1

. From (3.6), we have(
1− 1

a

)
≤ log a ≤ (a− 1). If a > 1, then 1

a
≤ log a

a−1
≤ 1. If 0 < a < 1, then 1

a
≥ log a

a−1
≥ 1. In either

case, we have | log a
a−1

− 1| ≤ | 1
a
− 1| < aϵ

a
= ϵ for 0 < |a− 1| < δ = aϵ, and the assertion follows.

Theorem 3.11. The logarithmic function has the following properties.

(a) log(ab) = log a+ log b.
(b) log a > 0 for a > 1 and log a < 0 for 0 < a < 1.
(c) log a = 0 if and only if a = 1.
(d) log is strictly increasing.
(e) log is injective.
(f) log is continuous.
(g) for any x ∈ R and a > 0, log(ax) = x log a.
(h) log is surjective.

Proof. (a) We will make use of Lemma 2.2 in the following calculations

log a+ log b = lim
k→∞

k( k
√
a− 1) + lim

k→∞
k(

k
√
b− 1)

= lim
k→∞

1
k
√
b

(
k(

k
√
ab− 1) + k(

k
√
b− 1)2

)
= lim

k→∞

1
k
√
b

lim
k→∞

k(
k
√
ab− 1) + lim

k→∞

1
k
√
b

lim
k→∞

k(
k
√
b− 1) lim

k→∞
(

k
√
b− 1)

= 1× log(ab) + 1× log b× (1− 1) = log ab.

(b) Follows from (3.6).

(c) If a = 1, by (a) log 1 + log 1 = log(1), which gives log 1 = 0. The converse follows from (b).

10
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(d) If 0 < a < b, then b/a > 1. By (a) and (c), 0 = log 1 = log(aa−1) = log a + log(a−1), so that
log(a−1) = − log a. Now by (b), log(b/a) > 0 or log b− log a > 0, that is, log a < log b, which proves
that the logarithmic function is strictly increasing.

(e) Follows from (a) and (c) or by (d).

(f) Let ϵ > 0 be given. Let xn → a in R+. By Lemma 2.2(a) and (c), xn
a

→ 1 and a
xn

→ 1.

So we can choose N1, N2 ∈ N, such that
∣∣xn

a
− 1
∣∣ < ϵ for all n ≥ N1, and

∣∣ a
xn

− 1
∣∣ < ϵ for all

n ≥ N2. Define N = max{N1, N2}. From the aforementioned inequalities, we have for all n ≥ N ,(
xn
a

− 1
)
< ϵ and −ϵ <

(
1− a

xn

)
. Using these in (3.6) for ‘a’ = xn

a
> 0, we have

− ϵ <
(
1− a

xn

)
≤ log

(xn

a

)
≤
(xn

a
− 1
)
< ϵ, (3.8)

for all n ≥ N , which gives | log(xn/a)| < ϵ for all n ≥ N , that is, log(xn/a) → 0 or (log xn− log a) →
0 or log xn → log a. So, the logarithmic function is continuous at a.

(g) First let x ∈ Z. If x = 0 then a0 = 1 and log a0 = 0 log a = 0 is satisfied. If x ∈ N, by
(a), we have log(ax) = x log a. Also, as x log a + x log(1/a) = log(axa−x) = log 1 = 0, we have
log(a−x) = −x log a. So, log ax = x log a for all x ∈ Z.

Now let x = p/q ∈ Q, and let ap/q = b, that is, ap = bq. Then log(ap) = log(bq), which gives
p log a = q log b or log b = p

q
log a. So, log ax = x log a holds for all x ∈ Q.

Finally, let x ∈ R. Let {rn} be a sequence of rational numbers converging to x. By definition, arn →
ax. By (f) along with the continuity of real exponentiation, log(arn) → log(ax) or rn log a → log(ax).
Also, by Lemma 2.2(a), (rn log a) → (x log a). So, by uniqueness of convergence, log(ax) = x log a
as desired.

(h) Let x ∈ R. We want to find a y ∈ R+, such that x = log y = infk{k( k
√
y − 1)}, which in turn

implies that x ≤ k( k
√
y − 1) or

(
1 + x

k

)
≤ k

√
y. So, whenever

(
1 + x

k

)
> 0, we seek y, such that(

1+ x
k

)k ≤ y. To find y, we proceed as follows. If x = 0, by (c) we have log y = 0 for y = 1. So, let
x ̸= 0. For convenience, we define

uk =
(
1 +

x

k

)k
, k ∈ N. (3.9)

Choose N ∈ N, such that
(
1 + x/k

)
> 0 for all k ≥ N . If x < 0, write x = −t, where t > 0.

Whenever,
(
1 + x

k

)
=
(
1− t

k

)
> 0, we have the following

(
1 +

x

k + 1

)k+1

=
(
1− t

k + 1

)k+1

=
(
1− t

k
+

t

k(k + 1)

)k+1

=
(
1− t

k

)k+1

+
t

k

(
1− t

k

)k
+

k+1∑
i=2

(
k + 1

i

)(
1− t

k

)k+1−i ti

ki(k + 1)i

=
(
1− t

k

)k
+

k+1∑
i=2

(
k + 1

i

)(
1− t

k

)k+1−i ti

ki(k + 1)i

>
(
1− t

k

)k
=
(
1 +

x

k

)k
,

(3.10)
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since each term in the summation is positive. On the other hand for x > 0, we also have(
1 +

x

k + 1

)k+1

=

k+1∑
m=0

(
k+1
m

)
(k + 1)m

xm =

k+1∑
m=0

m−1∏
i=0

(
1− i

k + 1

)xm

m!

>

k+1∑
m=0

m−1∏
i=0

(
1− i

k

) tm
m!

>
(
1 +

x

k

)k
.

(3.11)

From (3.10)-(3.11), we have uk < uk+1 for all x ∈ R so that the sequence {uk}k≥N is strictly
increasing. By (d), the sequence {log(uk)}k≥N is also strictly increasing.

TakeM ∈ N, such that |x|/M < 1, so that we have |uk| ≤
∑M−1

m=0
|x|m
m!

+
∑∞

m=M
|x|m
m!

≤
∑M−1

m=0
|x|m
m!

+

|x|M
∑∞

m=0
|x|m
Mm =

∑M−1
m=0

xm

m!
+ |x|M

1−|x|/M , which proves that {uk} is bounded. By, Theorem 2.3, the

sequence {uk} converges. So, let uk → y. Note that y > 0. By (f), log uk → log y.

Also, using (3.6) for a = uk, k ≥ N , we have k(1− 1
1+x/k

) ≤ log uk ≤ k(1+x/k−1) = x, which gives

0 ≤ x− log uk ≤ x(1− 1
1+x/k

) → 0 as k → ∞. Thus, log uk → x. By uniqueness of convergence, we
have x = log y as desired.

Theorem 3.11 establishes that the logarithmic function is continuous and bijective. The proof of
the fact that limk→∞ uk exists, motivates the next.

Definition 3.3 (Exponential function). Let exp : R → R+, such that

exp(x) = lim
k→∞

(
1 +

x

k

)k
. (3.12)

The function exp is called the exponential function.

Theorem 3.12. log−1 = exp.

Proof. Let ϵ > 0 be given, and let x > 0. We can choose N ∈ N, such that
(
1 + log x

k

)
> 0,(

k( k
√
x − 1) − log x

)
< ϵ

(1+ϵ)x
, and |x− 1

k − 1| < ϵ for all n ≥ N . If we let pk =
(
1 + log x

k

)k
, by

Theorem 3.11, log x ≤ k( k
√
x − 1) implies pk ≤

(
1 + k( k√x−1)

k

)k
= x, so that 0 < pk ≤ x for all

k ≥ N . On applying the first inequality of Theorem 3.5 for r = k ≥ N , k
√
x >

(
1 + log x

k

)
> 0, we

get

0 ≤
(
( k
√
x)k − pk

)
≤ x1− 1

k (k( k
√
x− 1)− log x),

from which we have

0 ≤ (x − pk) ≤ x1− 1
k (k( k

√
x − 1) − log x) < x(1 + ϵ) ϵ

(1+ϵ)x
= ϵ for all n ≥ N . So, pk → x, that is,

exp(log x) = x.

Now for any y ∈ R, by Theorem 3.11(h), choose x ∈ R+, such that log x = y. As uk → y = exp (x),
by Theorem 3.11(f), log uk → log y = log(exp(x)). But in the proof of Theorem 3.11(h), we have
log uk → x. So, by uniqueness of convergence, log(exp(y)) = y.

Corollary 3.13. exp(x+ y) = exp(x) exp(y) for all x, y ∈ R.

Proof. Let exp(x) = x1 and exp y = y1. Then x = log x1 and y = log y1. So, x+y = log x1+log y1 =
log(x1y1), which implies exp(x+ y) = exp(log(x1y1)) = x1y1 = exp(x) exp(y).

Corollary 3.14. For any x ∈ R, exp(x) = (exp(1))x.

12
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Proof. First observe that for any real number a > 0,

ax = exp(log(ax)) = exp(x log a) = limk→∞

(
1 + x log a

k

)k
, which on taking a = exp(1) gives

(exp(1))x = limk→∞

(
1 + x log exp(1)

k

)k
= limk→∞

(
1 + x

k

)k
= exp(x), as desired.

Theorem 3.15. For any a ∈ R+, limh→0

(
ah−1

h

)
exists and is equal to log a.

Proof. Let g(h) = ah−1
h

for h ̸= 0.

We first show that g is strictly increasing on (0, 1]. So, let h1, h2 ∈ (0, 1], where h1 < h2. Choose
two sequences of rational numbers {sn} and {tn}, such that {sn} is monotonically decreasing and
sn → h1; {tn} is monotonically increasing with s1 ≤ t1 and tn → h2. One example of such {sn}
and {tn} could be

sn ∈
{
Q ∩

(
h1 +

λ

n+ 2
, h1 +

λ

n+ 1

)}
; tn ∈

{
Q ∩

(
h2 −

λ

n+ 1
, h2 −

λ

n+ 2

)}
,

where λ = (h2 − h1), and n ∈ N. Clearly, sn < tn for all n, sn → h1 and tn → h2, where
h1 = infn{sn} and h2 = sup{tn}. By continuity of g, g(sn) → g(h1) and g(tn) → g(h2). Since
g(q) = (a− 1)fq(a) for all q ∈ Q+, where fq is as in (3.3), which is found to be strictly increasing,
we have g(sn) < g(tn), and {g(sn)} and {g(tn)} are strictly decreasing and strictly increasing
sequences, respectively. Therefore, g(sn) → infn{g(sn)} = g(h1) and g(tn) → supn{g(tn)} = g(h2)
so that g(h1) ≤ g(sn) < g(tn) ≤ g(h2), from which we get g(h1) < g(h2).

So, for any h ∈ (0, 1), if we choose k ∈ N satisfying 0 < 1
k

< h < 1 then log a ≤ k( k
√
a − 1) =

g(1/k) < g(h) < g(1) = (a− 1). So, g is bounded on (0, 1].

We have proved that g is a strictly monotone, continuous, and bounded function on the interval
(0, 1]. Now we prove that limh→0+ g(h) exists and is equal to α = inf0<h<1{g(h)}. So, let ϵ > 0 be
given. Then (α + ϵ) is not a lower bound of the set {g(h) | 0 < h < 1}. So, there is a δ ∈ (0, 1),
such that g(δ) < (α + ϵ). Then for all 0 < h < δ, we have 0 < (g(h) − α) ≤ (g(δ) − α) < ϵ. So,
limh→0+ g(h) = α. Now for 0 < h < 1, g(−h) = a−hg(+h), where limh→0 a

−h = a0 = 1. So,
limh→0− = 1× limh→0+ g(h) = α. Thus, limh→0 g(h) = α.

Finally, let ϵ′ > 0 be given. Let δ′ > 0 be a real number such that 0 < |h| < δ′ implies 0 ≤
|g(h) − α| < ϵ′. Then for each positive integer k > 1, where 1

k
< δ′, we have 0 ≤ g(1/k) − α < ϵ′,

which proves that g(1/k) → α. Since g(1/k) → log a, by uniqueness of convergence, α = log a.

Corollary 3.16. limh→0

(
exp(h)−1

h

)
= 1.

Proof. By Corollary 3.14 and Theorem 3.15, we have

limh→0

(
exp(h)−1

h

)
= limh→0

(exp(1))h−1
h

= log(exp(1)) = 1.

Theorem 3.17. If a > 0 and r ∈ R, then limx→a
xr−ar

x−a
= rar−1.

Proof. Let ϵ > 0 be given. We will prove the result in the following cases.

If r ∈ N, we have xr−ar

x−a
=

(x−a)(
∑r

m=1 xr−mam−1)

(x−a)
=
∑r

m=1 x
r−mam−1. So, limx→a

xr−ar

x−a
=

limx→a

∑r
m=1 x

r−mam−1 =
∑r

m=1 a
r−mam−1 = rar−1, where the last step follows from Theorem

2.7 since a polynomial function is continuous by Theorem 3.3(a) and Theorem 2.8(a).

Now we will extend the result to all integers. The case r = 0 is trivial. We only need to establish

13
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the case of negative integers. So, let r ∈ N, and consider x−r−a−r

x−a
= xr−ar

x−a
× −1

(xa)r
. Thus,

limx→a
x−r−a−r

x−a
= limx→a

xr−ar

x−a
limx→a

−1
(xa)r

= rar−1 × −1
a2r = −ra−r−1 as desired.

Now we will extend the result to all rational numbers. So, let r = p
q
, where p ∈ Z and q ∈ N. Let

x
1
q = u and a

1
q = v so that x = uq and a = vq. Note that x → a implies u → v. Then we have

limx→a
xr−ar

x−a
= limu→v

up−vp

uq−vq = limu→v
up−vp

u−v
limu→v

u−v
uq−vq = pvp−1

qvq−1 = rvq(r−1) = rar−1.

Finally, let r ∈ R. Let {qn} be a sequence of rational numbers, such that qn → r. Then
limx→a

xqn−aqn

x−a
= qna

qn−1. So, for a given ϵ > 0, there is a δ > 0, such that 0 < |x − a| < δ

implies
∣∣xqn−aqn

x−a
− qna

qn−1
∣∣ < ϵ

3
. Since qn → r, by continuity of exponentiation,

(
xqn−aqn

x−a

)
→(

xr−ar

x−a

)
. Also, qna

qn−1 → rar−1. So, choose N ∈ N, such that
∣∣xqn−aqn

x−a
− xr−ar

x−a

∣∣ < ϵ
3

and

|qnaqn−1 − rar−1| < ϵ
3
for all n ≥ N . Now consider the following for 0 < |x− a| < δ.∣∣∣rar−1 − xr − ar

x− a

∣∣∣ ≤ ∣∣rar−1 − qNaqN−1
∣∣+ ∣∣∣qNaqN−1 − xqN − aqN

x− a

∣∣∣+ ∣∣∣xqN − aqN

x− a
− xr − ar

x− a

∣∣∣
<

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ,

which completes the proof.

4 Concluding Remarks

The present exposition is aimed at deriving some of the standard results on limit. In doing so, we
have used the concept of convergence to define continuity of functions. These results on limits are
useful in obtaining derivatives of real valued functions defined on subsets of R. The derivative of
such a function f at a point a of its domain is defined by

d

dx
f(x) = lim

x→a

f(x)− f(a)

x− a
, (4.1)

provided that the limit exists.

Within the framework of the present setup, one can prove the basic formulas on derivatives. For
example, using Corollary 3.16, we can show that

d

dx
exp (x) = exp(x) lim

h→0

(exp(h)− 1

h

)
= exp(x)× 1 = exp(x), (4.2)

which avoids the use of infinite series expansion of the exponential function. Similarly, Theorem
3.17 can be used to prove that

d

dx
xr = rxr−1 (4.3)

for all real r and x > 0, which avoids the use of Taylor’s expansion.

The continuity of the functions defined on subsets of R plays vital role in understanding the
real exponentiation, which in the present exposition has been defined via convergence. Then the
connection between the limit and continuity is established, which facilitates many calculations on
limit. For instance, Theorem 2.9 can be used to show that

lim
x→0

(1 + x)
1
x = lim

x→0
exp
{ log(1 + x)

x

}
= exp

{
lim
x→0

log(1 + x)

x

}
= exp(1), (4.4)

where the last step is obtained using (3.7).

14
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Similarly, Theorem 3.12 can be used to show that for a positive real number a ̸= 1, the map defined
by x 7→ ax for all real x is bijective with continuous inverse, since the exponential function is
bijective and ax = exp(x log a). Moreover, the inverse map is defined by y 7→

(
log y
log a

)
for all positive

real y, since a
log y
log a = exp

(
log y
log a

log a
)
= exp(log y) = y and log(ax)

log a
= x for all real x. The inverse

map so obtained defines the logarithm of y with respect to the base a denoted by loga y, that is, if
y = ax then we write loga y = x = log y

log a
.

Finally, to prove that d
dx

sinx = cosx, one needs to show that

lim
x→0

sinx

x
= 1. (4.5)

This requires a discussion on complex exponential function, and limit and continuity of functions
defined on subsets of R2, which can be done via desiring componentwise existence of these concepts.

After doing that, one can establish the existence of limk→∞

(
1+ ιx

k

)k
, and define this limit to be the

complex exponential exp(ιx). Then the Corollary 3.16 can be extended to the complex exponential,

which after defining sinx =
exp(ιx)− exp(−ιx)

2ι
will establish (4.5). We recommend the reader to

go through another different approach of obtaining (4.5) in [6] via purely non-geometric definitions
of the trigonometric functions.

We would like the reader to consult the excellent texts by Bloch [7], Stillwell [8], and Kumar and
Kumaresan [9] on the present lines.
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