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Abstract 
 

In this paper, the effects of heat generation and MHD on free convection flow along a vertical flat plate 
have been investigated. Joule heating and heat conduction due to wall thickness b are considered in this 
investigation. The non-dimensional equations are then transformed into non-linear equations by 
introducing a non- similarity transformation. The resulting equations together with their corresponding 
boundary conditions are solved numerically by using the finite difference method. Numerical results for 
the velocity profiles, temperature profiles, skin friction coefficient and the surface temperature 
distributions are shown both on graphs and tabular form for different values of the parameters. 
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1 Introduction 
 

Natural convection heat transfer has gained considerable attention because of its numerous applications in 
the areas of energy conservations cooling of electrical and electronics components, design of solar 
collectors, heat exchangers and many others. One common application is the fuse used in electric circuits. It 
is a short piece of metal, inserted in a circuit, which melts when excessive current flows through it and thus 
breaks the circuit. It thus protects appliances. The material of a fuse generally has a low melting point and 
high conductivity. Familiar domestic applications are the electric iron, bread toaster, even electric kettle, 
heater, etc. The main difficulty in solving natural convection problems lies in the determination of the 
velocity field, which greatly influences the heat transfer process. El-Amin [1] also studied combined effects 
of viscous dissipation and Joule heating on MHD forced convection over a non isothermal horizontal 
cylinder embedded in a fluid saturated porous medium. Gebhart [2] investigated the effects of viscous 
dissipation in natural flow. Alam et al. [3] studied the effects of pressure stress work and viscous dissipation 
in natural convection flow along a vertical flat plate with heat conduction. Joule heating effects on the 
coupling of conduction with magneto-hydrodynamic free convection flow from a vertical flat plate have 
been investigated by Alim et al. [4]. Combined effect of viscous dissipation and Joule heating on the 
coupling of conduction and free convection along a vertical flat plate have been investigated by Alim et al. 
[5]. Vajravelu et al. [6] studied the effects of heat transfer in a viscous fluid over a stretching sheet with 
viscous dissipation and internal heat generation. Hossain [7] analyzed the viscous and Joule heating effects 
on MHD free convection flow with variable plate temperature. Hossain et al. [8] investigated the effects of 
natural convection flow along a vertical wavy surface temperature in presence of heat generation / 
absorption. Miyamoto et al. [9] has considered the effect of axial heat conduction in a vertical flat plate on 
free convection heat transfer. Molla et al. [10] have been investigated the effects of magneto-hydrodynamic 
natural convection flow on a sphere in presence of heat generation. Pozzi and Lupo [11] has shown that the 
coupling of conduction with laminar natural convection along a flat plate. The present investigation is 
concerned with the effects of heat generation on the skin friction and the surface temperature distribution in 
the entire region from upstream to down-stream of a viscous incompressible and electrically conducting 
fluid from a vertical flat plate in presence of magnetic field. It has been studied that the effect of the 
magnetic parameter M, the Joule heating parameter Jul, the Prandtl number Pr and the heat generation 
parameter Q on the velocity and temperature fields as well as on the skin friction and surface temperature. In 
the following sections detailed derivations of the governing equations for the flow are discussed. 
 

2 Governing Equations of the Flow 
 
It has been considered that the steady two dimensional laminar free convection boundary layer flow of a 
viscous incompressible and electrically conducting fluid along a side of a vertical flat plate of thickness ‘b’ 
insulated on the edges with temperature Tb maintained on the other side in the presence of a uniformly 
distributed transverse magnetic field has been considered. The flow configuration and the coordinates 
system are shown in Fig. 1.  
 

The mathematical statement of the basic conservation laws of mass, momentum and energy for the steady 
viscous incompressible and electrically conducting flow, after simplifying we have  
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Where, U and V are the velocity components along the X and Y axis respectively, T is the temperature of the 
fluid and T  is the ambient fluid temperature in the boundary layer , g is the acceleration due to gravity,    

is the thermal conductivity,  is the density, pC  is the specific heat at constant pressure and   is the 

kinematic viscosity of the fluid.  The amount of heat generated or absorbed per unit volume is 

 TTQ0 , Q0 being a constant, which may take either positive or negative. The source term represents 

the heat generation when Q0  0 and the heat absorption when Q0  0. In the energy equation heat generation 

and Joule heating terms are included. Here for exterior conditions we know, gXP e /  and 

e  , P is the pressure, B0 is the magnetic field strength and  is the electric conductivity.  
 

 
Fig. 1. Physical configuration and coordinates system 

 

 The appropriate boundary conditions to be satisfied by the above equations are  

 

0, 0U V  at 0Y  

 TTU ,0 as Y   

(4) 

 

The temperature and the heat flux are considered continuous at the interface for the coupled conditions and 
at the interface we must have   
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Where sk  and fk  are the thermal conductivity of the solid and the fluid respectively.    The temperature 

soT  in the solid as given by A. Pozzi and M. Lupo [11] is  
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Where  ,0T X  is the unknown temperature at the interface to be determined from the solutions of the 

equations. 
 

We observe that the equations (1) - (3) together with the boundary conditions (4) - (5) are non-linear partial 
differential equations. In the following sections the solution methods of these equations are discussed in 
details below. 

 

3 Transformation of the Governing Equations 

 
Equations (1) – (3) may now be non-dimensionalized by using the following dimensionless dependent and 
independent variables:  
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For the problem of natural convection, its parabolic character has no characteristic length; L has been 
defined in terms of   and g, which are the intrinsic properties of the system. The reference length along the 
‘y’ direction has been modified by a factor d-1/4 in order to eliminate this quantity from the dimensionless 
equations and the boundary conditions.  

 

The magneto hydrodynamic field in the fluid is governed by the boundary layer equations, which in the non-
dimensional form obtained by introducing the dimensionless variables described in (7), may be written as 
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(10) 

 

Where 
2/122

0 dLBM  , the dimensionless magnetic parameter, fpC Pr , the Prandtl 
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0   is 

the heat generation parameter. The corresponding boundary conditions (4) - (6) take the following form: 
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Where p is the conjugate conduction parameter given by  
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To solve the equations (9) – (10) subject to the boundary conditions (1.11), the following transformations 
were introduced for the flow region starting from upstream to downstream. 
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these transformations into equations (9) and (10) and after simplifying, we get the following transformed 
non-dimensional equations. 
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In the above equations the primes denote differentiation with respect to . 
 

The boundary conditions (11) take the following form 
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The solutions of the above equations (13) and (14) together with the boundary conditions (15) enable us to 

calculate the skin friction  and the surface temperature   at the surface in the boundary layer from the 
following relations: 
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4 Method of Solution 

 
This paper concerns the natural convection flow on magneto-hydrodynamics of viscous incompressible fluid 
along a uniformly heated vertical flat plate in presence of Joule heating and heat generation has been 
investigated using the very efficient implicit finite difference method known as the Keller box scheme 
developed by Keller [12], which is well documented by Cebeci and Bradshaw [13].  

 

To apply the aforementioned method, Equations (13) and (14) their boundary conditions (15) are first 
converted into the following system of first order equations. For this purpose we introduce new dependent 
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equations can be written as 
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 Now consider the net rectangle on the   ,  plane shown in the Fig. 2 and denote the net points by  
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Fig. 2. Net rectangle of difference approximations for the Box scheme 
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The finite difference approximation to the first order differential equation (21) and (22) are written for the 
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(33) 

The above equations are to be linearized by using Newton’s Quasi-linearization method. Then linear 
algebraic equations can be written in block matrix which form a coefficient matrix. The whole procedure, 
namely reduction to first order followed by central difference approximations, Newton’s Quasi-linearization 
method and the block Thomas algorithm, is well known as the Keller-box method. 
 

5 Results and Discussion 
 
Here we have investigated the problem of the steady two dimensional laminar free convection boundary 
layer flow of a viscous incompressible and electrically conducting fluid along a side of a vertical flat plate of 
thickness ‘b’ insulated on the edges with temperature Tb maintained on the other side in the presence of a 
uniformly distributed transverse magnetic field and heat generation. Solutions are obtained for the fluid 
having Prandtl number Pr = 0.01, 0.10 0.50, 0.73, 1.00 and for a wide range of the Joule heating parameter 
Jul = 0.20, 0.40, 0.70, 0.90, the magnetic parameter M = 1.10, 1.40, 1.60, 1.80 and the heat generation 

parameter Q = 0.20, 0.40, 0.70, 0.90.  ,f x  ,  ,h x  . 
 

Fig. 3(a) and 3(b) represent, respectively, the velocity and the temperature profiles for different values of the 
Joule heating parameter Jul for particular values of the Prandtl number Pr=0.72, the magnetic parameter 
M=1.00 and the heat generation parameter Q=0.20. We observe from Fig. 3(a), that an increase in the Joule 
heating parameter Jul, is associated with a considerable increase in velocity profiles but near the surface of 
the plate the velocity increases and become maximum and then decreases and finally approaches to zero 
asymptotically. However Fig. 3(b) shows the distribution of the temperature profiles against  for some 
values of the Joule heating parameter Jul (=0.90, 0.70, 0.40, 0.20). Clearly it is seen that the temperature 
distribution increases owing to increasing values of the Joule heating parameter Jul and the maximum is at 
the adjacent of the plate wall. The local maximum values of the temperature profiles are 1.7662, 1.6886, 
1.6164, 1.5496 for Jul = 0.90, 0.70, 0.50, 0.30 respectively and each of which attains at the surface. Thus the 
temperature profiles increase by 13.98% as Jul increases from 0.30 to 0.90. 
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Figs. 4(a)-4(b) display results for the velocity and temperature profiles, for different small values of 
magnetic parameter M (=1.10, 1.40, 1.60, 1.80, 2.10) plotted against  at Pr = 0.72, Jul=0.50 and Q = 0.60.  
It is seen from Fig. 4(a) that the velocity profile is influenced considerably and decreases when the value of 
magnetic parameter M increases. But near the surface of the plate velocity increases significantly and then 
decreases slowly and finally approaches to zero. Also, it has been observed that the temperature field 
increases for increasing values of magnetic parameter M in Fig. 4(b). Fig. 5(a)-5(b) display results for the 
velocity and temperature profiles, for different small values of heat generation parameter Q (=0.20, 0.40, 
0.70, 0.90) plotted against  at Pr = 0.72, M = 0.50 and Jul = 0. Also Fig. 5(b), it has been observed that 
when value of heat generation parameter Q increases, the temperature distribution also increases 
significantly. 
 
Fig. 6(a)-6(b) display results for the velocity and temperature profiles, for different small values of Prandtl 
number Pr (=1.00, 0.73, 0.40, 0.20) plotted against  at M = 0.90, Jul=0.70 and Q = 0.50.  It is seen from 
Fig. 6(a) that the velocity profile is influenced considerably and decreases when the value of magnetic 
parameter Pr increases. 
 

  
 

Fig. 3(a) and Fig. 3(b). Variation of dimensionless velocity profiles f (x,) and temperature profiles 
against dimensionless distance  for different values of Joule heating parameters Jul with Pr = 0.72, 

M = 1.40 and Q = 0 .20 
 

  
 

Fig. 4(a) and Fig. 4(b). Variation of dimensionless velocity profiles f (x,) and temperature profiles 
against dimensionless distance  for different values of Magnetic parameters Jul with Pr = 0.72, Jul = 

0.50 and Q = 0 .60 
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Fig. 5(a) and Fig. 5(b). Variation of dimensionless velocity profiles f (x,) and temperature profiles 

against dimensionless distance  for different values of heat generation parameters Q with Pr = 0.72, 
M = 0.50 and Jul = 0 .30 

 

But near the surface of the plate velocity increases significantly and then decreases slowly and finally 
approaches to zero. Also, it has been observed that the temperature field decreases for increasing values of 
Prandtl number Pr in Fig. 6(b). 

 

  
 

Fig. 6(a) and Fig. 6(b). Variation of dimensionless velocity profiles f (x,) and temperature profiles 
against dimensionless distance  for different values of Prandtl number parameters Q with Pr = 0.72, 

M = 0.50 and Jul = 0 .30 
 

  
 

Fig. 7(a) and Fig. 7(b). Variation of skin friction coefficient f (x, 0) and surface temperature  (x, 0) 
with dimensionless distance x for different values of Joule heating parameters Jul with Pr = 0.72, M = 

1.40 and Q = 0 .20 
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Numerical values of the velocity gradient  ,0f x  and the surface temperature  ,0x  are depicted 

graphically in Fig. 7(a) and 7(b) respectively against the axial distance x in the interval [0, 6.5] x for different 
values of Joule heating parameter Jul (= 0.90, 0.70, 0.40, 0.20). It is seen from Fig. 7(a) that the skin-friction 

 , 0f x  increases when the Joule heating parameter, Jul increases. It is also observed in Fig. 7(b) that the 

surface temperature  ,0x  distribution increases while Jul increases. 

 

The effect of magnetic parameter M (= 2.10, 1.80, 1.60, 1.40, 1.10) on the skin-friction  ,0f x  and the 

surface temperature distribution  ,0x  against x for Pr = 0.72, Jul = 0.50, and Q = 0.60 is shown in Fig. 

8(a) - 8 (b). It is found that the values of the skin-friction  ,0f x  and the surface temperature distribution 

 ,0x  both decrease for increasing values of magnetic parameter M. Also, it is observed that the values of 

the skin-friction  , 0f x  decrease by 95.73% and the surface temperature distribution  ,0x   

decreases by 97.26% while M increases from 1.10 to 2.10. 
 

  
Fig. 8(a) and Fig. 8(b). Variation of skin friction coefficient f (x, 0) and surface temperature  (x, 0) 
with dimensionless distance x for different values of Magnetic parameters with Pr = 0.72, Jul = 0.50 

and Q = 0 .60 
 

  
Fig. 9(a) and Fig. 9(b). Variation of skin friction coefficient f (x, 0) and surface temperature  (x, 0) 
with dimensionless distance x for different values of heat generation parameters Q with Pr = 0.72, M 

= 0.50 and Jul = 0 .30 
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Fig. 10(a) and Fig. 10(b). Variation of skin friction coefficient f (x, 0) and surface temperature  (x, 
0) with dimensionless distance x for different values of Prandtl number parameters Q with Pr = 0.72, 

M = 0.50 and Jul = 0 .30 
 

Fig. 8(a)-8(b) illustrate the variation of skin-friction  , 0f x and surface temperature distribution 

 ,0x  against x for different values of heat generation parameter Q (=0.90, 0.70, 0.40, 0.20). It is seen 

from Fig. 8(a) that the skin-friction  ,0f x increases when the heat generation parameter Q increases. It 

is also observed in Fig. 8(b) that the surface temperature  ,0x  distribution increases while Q increases. 

In Fig. 9(a), the shear stress coefficient  ,0f x  and Fig. 9(b), the surface temperature  ,0x  are 

shown graphically for different values of the Prandtl number Pr (=0.01, 0.10, 0.50, 0.73, 1.00) when other 
values of the controlling parameter (M = 0.90, Jul = 0.70, and Q = 0.50). Five values 0.01, 0.10, 0.50, 0.73, 
1.00 are taken for Pr, the Prandtl number, 0.73 represents air, 1.00 corresponds to electrolyte solutions such 
as salt water, 0.01, 0.10 and 0.50 have been used theoretically. Here, it is founded that the skin friction and 
the surface temperature both decrease for increasing values of Prandtl number. 
 

Table 1. Skin friction coefficient and surface temperature distribution for different values of heat 
generation parameter Q against x with other controlling parameters Pr = 0.72, Jul = 0.30, M = 0.50 

 
x Q = 0.20 Q = 0.40 Q = 0.70 Q = 0.90 

f (x, 0)  (x ,0) f (x, 0)  (x ,0) f (x, 0)  (x ,0) f (x, 0)  (x ,0) 
0.0000  
0.3045 
0.7090  
1.0265 
2.0369 
3.0049  
4.0219 
5.0387  
6.0502 

0.0155  
0.5083 
0.6416 
0.7067  
0.8372  
0.9169  
0.9794  
1.0296 
1.0717 

0.2052 
0.7352 
0.7907 
0.8152 
0.8614 
0.8885 
0.9095 
0.9263 
0.9405 

0.0155 
0.5801 
0.7502  
0.8356  
1.0113 
1.1213 
1.2093  
1.2811 
1.3423 

0.2052 
0.8126 
0.8847 
0.9168 
0.9773 
1.0131 
1.0414 
1.0645 
1.0844 

0.0155 
0.6663 
0.8851 
0.9982 
1.2373 
1.3913 
1.5169 
1.6211 
1.7111 

0.2052 
0.9106 
1.0087 
1.0531 
1.1381 
1.1893 
1.2304 
1.2648 
1.2949 

0.0155 
0.7686 
1.0490 
1.1981 
1.5208 
1.7337 
1.9101 
2.0583 
2.1877 

0.2052 
1.0338 
1.1701 
1.2332 
1.3559 
1.4311 
1.4924 
1.5443 
1.5903 

 
In Table 1 skin friction coefficient and surface temperature distribution for different values of heat 
generation Q while M = 0.50, Jul = 0.30 and Pr = 0.72 are entered. Here it is found that the values of skin 
friction decrease at different position of x for heat generation parameter Q =0.20, 0.40, 0.70, 0.90. The rate 
of the skin friction increases by 89.08% as the heat generation parameter Q changes from 0.20 to 0.90 at 
position x = 3.0049. Furthermore, it is seen that the numerical values of the surface temperature distribution 
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increase for increasing values of heat generation parameter Q. The rate of increase of surface temperature 
distribution is 61.07% at position x = 3.0049 as the heat generation parameter changes from 0.20 to 0.90. 
 

6 Conclusions 
 
The effect of magnetic parameter M, Joule heating parameter Jul, the heat generation parameter Q and the 
Prandtl number Pr on the magneto-hydrodynamic (MHD) natural convection boundary layer flow along a 
vertical flat plate has been studied introducing a new class of transformations. The transformed non-similar 
boundary layer equations governing the flow together with the boundary conditions based on conduction and 
convection were solved numerically using the very efficient implicit finite difference method together with 
Keller box scheme. From the present investigation, the following conclusions may be drawn: 
 

 The skin friction coefficient, the surface temperature, the velocity and the temperature profiles 
increase for the increasing values of the Joule heating parameter Jul. 

 The skin friction coefficient, the surface temperature, the velocity and the temperature profiles are 
increasing for the increasing values of the heat generation parameter Q. 

 It has been observed that the skin friction coefficient, the surface temperature distribution, the 
velocity profile decreases over the whole boundary layer with the increase of the Prandtl number 
Pr. But the temperature profile increases at some distance against  and then it stars to decrease 
over the whole boundary layer with the increase of the Prandtl number Pr. 

 The effect of magnetic parameter M is to decrease the skin friction coefficient, the surface 
temperature distribution and the velocity distribution over the whole boundary layer, but reverse 
case happens for temperature distributions. 

 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] El-Amin MF. Combined effect of viscous dissipation and Joule heating on MHD forced convection 

over a non isothermal horizontal cylinder embedded in a fluid saturated porous medium. Journal of 
Magnetism and Magnetic Materials. 2003;263:337-343. 
 

[2] Gebhart B. Effects of viscous dissipation in natural convection. J. of Fluid Mech. 1962;14:225-232. 
 
[3] Alam Md. M, Alim MA, Chowdhury Md. MK. Effect of pressure stress work and viscous dissipation 

in natural convection flow along a vertical flat plate with heat conduction. Jounal of Naval 
Architecture and Marine Engineering. 2006;3(2):69-76. 

 
[4] Alim MA, Md. M. Alam, Abdullah-Al-Mamun. Joule heating effect on the coupling of conduction 

with magneto-hydrodynamic free convection flow from a vertical flat plate. Nonlinear Analysis: 
Modelling and Control. 2007;12(3):307-316. 

 
[5] Alim MA, Md. M. Alam, Abdullah-Al-Mamun, Belal Hossain. Combined effect of viscous 

dissipation and Joule heating on the coupling of conduction and free convection along a vertical flat 
plate. International Communication of Heat and Mass Transfer. 2008;35:338-346. 

 
[6] Vajravelu K, Hadjinicolaou A. Heat transfer in a viscous fluid over a stretching sheet with viscous 

dissipation and internal heat generation. Int. Comm. Heat Mass Transfer. 1993;20:417-430. 
 



 
 
 

Alam et al.; ARJOM, 7(3): 1-14, 2017; Article no.ARJOM.37941 
 
 
 

14 
 
 

[7] Hossain MA. Viscous and Joule heating effects on MHD free convection flow with variable plate 
temperature. Int. J. Heat and Mass Transfer. 1992;35(2):3485-3487. 

 
[8] Hossain MA, Molla MM, Yao LS. Natural convection flow along a vertical wavy surface temperature 

in presence of heat generation / absorption. Int. J. Thermal Science. 2004;43:157-163. 
 
[9] Miyamoto M, Sumikawa J, Akiyoshi T, Nakamura T. Effect of axial heat conduction in a vertical flat 

plate on free convection heat transfer. Int. J. Heat Mass Transfer. 1980;23:1545-1533. 
 
[10] Molla MM, Taher MA, Chowdhury MMK, Hossain MA. Magneto -hydrodynamic natural convection 

flow on a sphere in presence of heat generation. Nonlinear Analysis: Modelling and Control. 2005; 
10(4):349-363. 

 
[11] Pozzi A, Lupo M. The coupling of conduction with laminar natural convection along a flat plate. Int. 

J. Heat Mass Transfer. 1988;31(9):1807-1814. 
 
[12] Keller HB. Numerical methods in boundary layer theory. Annual Rev. Fluid Mech. 1978;10:417-443. 
 
[13] Cebeci T, Bradshaw P. Physical and computational aspects of convective heat transfer. Spring, New 

York; 1984. 
_______________________________________________________________________________________ 
© 2017 Alam et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 

 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://sciencedomain.org/review-history/22117 


