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Abstract

This paper considers the coefficient inverse problemthie nonlinear boundary problem of von Karman
equations. The Fréchet differentiability of the inverggerator is proved and its neural network
approximation is constructed with neuroevolution augmented topolagielmThe model used proves
efficient to solve the coefficient inverse problem rvior the parameters values close to thpse
corresponding to singular solutions of the direct problem.

Keywords: The coefficient inverse problem; nonlinear boundamblem; von Karman equations; the
inverse operator; the Fréchet differentiability; neuro-evimntaugmented topologies.

1 Introduction

The coefficient inverse problem for nonlinear boundary probt# PDEs (particularly, of von Karman
equations) is conventionally solved with the employmentapfous optimization methods like the Newton,

*Corresponding author: E-mail: olexiy.magas@gmaiht;



Obodan et al. ARJOM, 7(3): 1-9, 2017; Article no.ARJOM.37856

the Gauss-Newton, the gradient descent and others [13. afproach implies that some regularization
technique is applied to iterative process: Engl and Kii@present a brilliant review of various inverse
problems and regularization techniques with a particulashesis on nonlinear ones.

Alternatively, one can employ a neural network approximatiorife inverse operator that maps traces of
the direct (forward) problem solution onto unknown function$efibverse one. To this end, these solutions
are discretized and a learning sample for a neuralanktis selected in such a way that the values of the
inverse problem function corresponding to its vectors farcompact set. Such approach guarantee that the
inverse problem is regularized provided the direct proldess not possess singular points on its definition
domain and that the traces of the direct problem solutoresponding to the inverse problem solution are
close enough to the specified ones. Both formulations e thet the Fréchet differentiability of the inverse
operator be proved [3]. The paper [4] considers the inversblgm for non-linear time-dependent
Schrédinger equation; the problem is formulated using vanakiapproach. The author investigates the
existence, uniqueness, and Fréchet differentiability obltgisn. The paper [5] deals with inverse problems
in elasticity with application to cancer identification.

The coefficient inverse problem for von Karman equatiftois the subject of the present paper. The
respective direct problem — the nonlinear boundary proldéwmon Karman type — belongs to nonlinear
elliptic problems for partial differential equations; tpeoblem features — multiple solutions. This fact
explains the complexity to solve the inverse problem, namely,shoeld, on the one hand, explore the
solvability and Fréchet differentiability of the invergproblem and, on the other hand, apply methods of
artificial intelligence to approximate its solution. The preggmper employs the constructive neural network
(neuroevolution of augmenting topologies) to this end.

2 Materialsand M ethods

2.1 Problem statement

The subject of the present study is the coefficiemerse problem for the nonlinear elliptic equationsaf v
Karman-type. The respective direct problem reads asasll

Q= O (A (Hy)0jgu ) -1%07 Dyqu (B (Hy) + 0y wg) = A, (1)

Q2 =0j (Agkl (Hl)Dkluz)‘likljl D u1(Bij (Hu)+ 0 w)=0, @

Q={Q.Q,}", H ={H,, Hz}Tv u={ug,up}’

The definition domairQ = {X|X = (%, %) 0 Rz} for solution vector-functionu(X,H (X)) is assumed to be
a bounded Lipchitz domain iR% with a boundary , which is piecewise smooth. He A{jk' (Hl)> 0,
Agk' (H1)>O, Bij (H1)>0 are specified functionals of the known functiéty ; H, is the right-hand

o _ _ 9
a0 oy,

i i X]
boundary conditions

member, 0; = ;1,J =12, A is the parameter. The solution should satisfyftiewing

ur =0; ——=u, =0, 3)
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where n is the unit normal vector to the surfage Of fundamental importance is a set of admissible
solutions for the direct and inverse problems defias

U oa) H oM 0%H - @)
Ul =0,dy|- =0 as—-<b; >0
ou u?

Hereinafterwzlg is the Sobolev spac&‘é, Vé, Véz are the Hilbert spaces with norms and scalar tsdu
defined as

(U1,V1)\/(12 = [j)AEk' (H)0j w0 vde
||U1||\2,1 = [AM (H)TjuOude

° 0
(Uz,Vz)\,é = [I)Agkl (H)0j uz0 i vode
- (5
||U2||\2/2 = [ A (H)Oj U0k upd0

5 0
(U’V)véz = [(Ul I\ ,Vz)]v!lf = (u 1V1)\/£1) + (up ,Vz)vgz

2 2
||Uz||V£122 = ||U1||\2,!12 Huzl, 2

respectively. The functions that belong to the Betare equibounded, monotonic, and convex, and,

consequently, the sdil is a compact set. Input data for the inverse gmobbre known traces of the
function u at the specified pointg,

u(y, ,H)=u", r=1R. (6)

In the framework of variational approach, this a#othe following equivalent statement of the ineers
problem in question

pVéZ = (u(yr,H),u*)\/éz , H OH , u DV&Z. (7)

The discrepancy functional (7) represents the wigtan the spacla’glzz between the caIcuIatem(y, , H) and

specified u" solutions of the direct problem. Thus, the solutid the inverse problem is defined as
H:argminpvlz(u(yr,H),u*), HDlzf, udy . (8)
Q
2.2 Properties of the inver se problem model
Of primary interest is the Fréchet differentialyiliof the vector-functionsu with respect toH ; the

respective proof utilizes definition of the geneaatl solution, namely: the vector-function
u= (ul,uz)T DVé2 is the generalized solution of the direct problérthe following holds



Obodan et al. ARJOM, 7(3): 1-9, 2017; Article no.ARJOM.37856

(U1,V1)\/é = glelikljl (Bij v — Oy le)D kU2 = "|2V1JdQ :

. 9)
(Uz,Vz)\/g = ‘gzll'kljk(&jU1‘DiU15jU1)Dk|Vz]dQ :

for the arbitrary vector-functiorv:(vl,vz)T , vDVéz. The Riesz theorem guarantees the existence of
operatorsM , N that enables the operator representation of (9):

up = N(u(Hy, Hy)),
up =M (u(Hy, H>)). (10)

Vorovich [6] proves that these operators are sigoogntinuous. To prove their Fréchet differentidpi we
consider a functiorHq (such thalu(HO) is non-singular solution) and its perturbatibn=Hq + AH with

o) () o)
|[aH| < & (e is small) and examine the respective solutiarfsiy) and u(Ho+AH)=u(Hg)+Au. The
non-singularity ensures that =1 is not an eigenvalue of the following equations

Au-p gradG(u)|u=u0 Au=0, (11)

where Au :{Aul,Auz}T, G(u) :{N(u),M (u)}T . Since ¢ is small, the following holds true

2 () g AN
AN = A+ —P AH = AR+ AT A
oH
H=Ho (12)
@ @ o o
B” —Bij+— AH:B”‘FAB”AH
Hly Ho

W @ @ @
Furthermore, space\&% , Vé andVé , Vé symbolize the spaces associated with points (lil@eHO) and
(uo +Au,Hg +AH), respectively. It is straightforward to prove tlia¢se spaces are equivalent and thereby

@) ()

each element ol Dvgg’ belongs tovgg’ , and vice versa. Therefore, expressions (9) r@sult

() o )
[“ prJ(z) :[“ p,va O oAl 810y upav, ko (13)
A vp @
and in
2) 1)
{“ p’ij Q) ‘{“ P'Vp) ) =maH [duelyp Bl P=12. (14)
VQ VQ

With operatorst [6] defined as



Obodan et al. ARJOM, 7(3): 1-9, 2017; Article no.ARJOM.37856

(Dpup,vpl/(g) :(uvaplﬁi[)ll p=12, (15)
the inequality (14) yields to

1-njaH] <[y s1+nfaH], p=12. (16)
If one estimates each term of the generalizedisoluising the embedding theorems, one finally oistai

0 (2
M-M

-4

2 .
gp < 1e sy + Ll
Vo Q
17)

2 3
g =l hul?, <, |

where m;,m, are constants. Thus, the principal part of theeiment of operatorM and N are linearly
proportional to|AH| and finite, and thereby the operators are thetfététifferentiable.

2.3 Methods to solvethe direct and inver se problems

To represent the unknown functions of the direct Baverse problems, we introduce two nets with sode
Xp, P=1P and X, k=1K , respectively; specified valuds” are determined at the points, ,
r=1R.

To solve the direct problem, we use the finite eletrmethods [7]. The definition domain is meshed] a
solutions of the direct and inverse problems angr@pmated in the local coordinate system usingrthe

nodal vaIuesJ{U p}, {U ;} {H;} p= ],_P , k= :L_K . Thus, for the specified vectdt :{Hok}, a solution of
the direct problem (1)-(3) satisfies the finitetseys of nonlinear algebraic equations

KUH)=Q. (18)

Hereinafter,U :(Ul,UZ,)T is the vector of nodal values for the vector fiorctu; K =K +Ky is the

transformation operator with the line# :[BL]T[D][BL] and nonlinearKy :[BN]T[D][BN] terms; B,
and By are shape functions matriceg; is the vector of discretized right-hand terms.

In turn, a solution of the inverse problem satsfi@) and, consequently, its discrete counterpart

H" :argmjn,o(U,U*), (29)
HOH

R * * * *

with p= Z(Ur(Hk)—Ur(Hk))T(Ur(Hk)—Ur(Hk)). This determines the functioi :Z(U ) where
r=1

Z(U*) is the approximate nonlinear mappiUg* SH.

The Kolmogorov superposition theorem [8,9] stalesg tiny function of many variables can be represknt
as a cascade superposition of linear operationsantinear functions of a single variable. Hechelisién
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[10] proposes to use multilayer perceptrdfP] to implement the structure of the Kolmogorov ttezo (see
[11] for a detailed description of MP and an exthdiscussion of its ability to implement this stire and
approximate nonlinear mappings). For the probleseurstudy, one clamps the known vector-functibn
to perceptron inputs and uses’ as the corresponding desirable output values. Thmed net
approximates the discretized inverse operﬂ(b!*) with an error, which depends on perceptron stractu
type of an activation function, training algorithrepresentativeness of a sample, etc [11].

The principal problem of such approximation is thdtether the discretized solutidﬂ(U*) is correctly

determined at pointsl* that do not belong to the learning sample usedhiBoend, one considers distance
between elements; andU; of the sample defined qa(u{,u;):“z(ui)—z(uzn. Vorovich proves [6]

that if p(UI,U;)s & and the non-singular solutiam(l) corresponding td)JI exists forH, = Z(UI) then the
non-singular solutioru®) exists for H, :Z(U;) likewise. Moreover,”u(l)—u(z)“sd(g) and d(g) - 0 as

- 0.

The topological lemma states [6] that if the onete correspondencea: H - U is continuous and the
subset H' OH is dense inH , then the inverse one-to-one correspondence is atmtinuous

O%:U" - H" onU". Therefore, if the learning samp}é* is compact and respective solutiomsare
non-singular then the lemma holds and one can thrrdetermineH(u). Consequently, the inverse

operator H(U) can be determined for all non-singular nonlinealutsons U(H) and it is possible to
construct its neural network approximation.

It is worth stressing that a fully-connected petoapis prone to redundant representation of tinetfan to
be approximated: connections between neurons thabtimatch those of real-world system tend to impa
the efficiency of training algorithm, degrade st quality and make it logically non-transparehb
overcome the problem, we employ neuro-evolutionnarged topology NEAT) [12] to generate the
optimal network structure.

This method uses specific genetic algorithm franm&wo establish neural networks evolution. Thughea
chromosome corresponds to a neural network, wtsilgeén describes a separate connection (its inmlit a
output neurons, its weight and activity). The netwéeatures an innovation list that is a tool torst
information about newly-created neurons and commest This allows unified description of all neuscemd
connections for all networks over all generationd ¢hereby reasonable way to mutate the networldls an
cross them over. The generalization error (19)utated for a specified epoch is used as a vald@neafss
function for a respective chromosome; a conventibaek-propagation algorithm is used to train netso

Of fundamental interest is an ability of the apploaescribed above to approximate the inverse tipera
H=H (U) for a strongly nonlinear function of the directed.n(H), even in the neighbourhood of its limit

points; of course, this suggests that the netwa& heen trained using a sample selected over the
representative domain of direct problem solutiohe Tepresentativeness means that the domain should
reflect variation of the model at hand.

3 Results and Discussion

The method described above was applied to buildraheetwork approximations to determine
unknown parameters of the right-hand terms for thectangular definition domain

Q :{X|X = (%, X )—as x <a-b<x, < b}.
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We considered three types of functicH,:
A, —p<x<¢
Ha= ]
0, otherwise
Hg(X)=1(05+05cos0)™, m=12...,
HC(X) :/1(0,5+ 0,5005rn>(2), m=12....

O —

00—

HA:{/" —P<x=9, Hg(X)=1(05+05c0s%)™,  He(X)=A(05+05c0:mx)
0, otherwise
(@ (b) (©

Fig. 1. The optimal structures of neural networksrestoring the right-hand term of a certain class.
a-Ha(X),b-Hg(X).c- He(X).

The wideranging simulation allows concluding that variability of theedi problem ssolution strong
affects the optimal network structure. . 1 exhibits the optimal structures correspondingigabove rigl-
hand terms. Fig. 2 shovestual and recovered values of parameters, namely, adeditoff the rig-hand
memberA (Fig. 2a) and the spanning angg¢ (Fig. 2b) forHA(X). The abscissa values corresponc

various numbers of testing set; solid curves stancdtwal values, whereas the values restoredyudin
and NEAT are designated by dotted and dashed curves, resiye:

1.2

0.8 Mo i

0.6 1
=1

0.4 -

0.2 m+

n (sample vector number) n (sample vector number)

(@ (b)

Fig. 2. True and recovered values of parametersfor various amplitudes of theright-hand member
The abscissa values correspond to various numbféessting set; solid, dotted and dashed curvesdstanactual
values and those restored by MP \NEAT, respectively. a - amplitudes of the rigattd membe A ;

b - the spanning angleg
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Fig. 3 shows average errors (difference between aatdhlrecovered value £ for noisy direct prolems
vs. noise amplituder for the same parameters (Figs. 3a and b correspond tedfueatioon ¢4 and ¢ ).
The noise is uniformly distributed and pertuw{U;}; its values ébscissa axis) represent its rela
amplitude (with respect to amplitude of the perturbingntjti)d. Dotted and dashed curve:s denotesainee
characteristics. One may conclude that NEAT model paddoetter than MP; moreoverr, it performs -
times betr for the parameters values close to those correspotadgiggular solution—this means that tr
plain MP is inapplicable to such cas

0.250 0.250
0.225 L 0.225
0.200 0.200
0.175 0.175 1
& 0.150 e TN & 0.1501
._; p”—~\\ /f S . 5 F
0.125 - i T = 0.125 ~
e, L R R * | AY
0.100 Falll aam=Efe 0.100 IR S = N F
o PR /
. \\ ,'
0.875 0.075 47— T .
0.850 — 0.050 —
@ 1 2 3 4 5 6 7 8 9 10 e 1 2 3 4 5 & 7 8 9 18
o(%) o(%)
(@ (b)

Fig. 3. Average errors (difference between actual and recovered values) ¢ for noisy direct problems
vs. noise amplitude o .
Dotted and dashed curves stand for values restoyedP and NEAT, respectively- amplitudes of the rig-hand
membei A ; b - the spanning angl

4 Conclusion

The variational statement of the coefficient invepseblem for von Karman equations is introducée;
Fréchet differentiability of the inverse operator is pro

In turn, the Fréchet differentiability allows neural netk@pproximatin of the inverse operator.
construct the optimal approximation, we apply n-evolution augmented topology model.

In the framework of wideanging simulation, NEAT model proves more efficient inmparison witt
conventional multilayer perceptron MFnd, more importantly, it allows approximation fdret parameter
values close to those corresponding to singular solutions dfrée problern

Competing I nterests
Authors have declared that no competing interests

References

[1]  Smotka M. Differetiability of the objective in a class of coefficient imge problen. Comput.
Math. Appl. 2017;73:2372387

[2] Engl HW, KuglerP. Nonlinear inverse problems: Theoretical aspects asome industria
applicationsin: Capasso and Periaux (Eds.), M-discidinary Methods for Analysis, Optimizatic
and Control of Complex Systems, Springer HeidelbergeSé&dathematics in Indus. 2005;3—-48.



Obodan et al. ARJOM, 7(3): 1-9, 2017; Article no.ARJOM.37856

(3]

(4]

(3]

(6]
(7]
(8]

(9]

(10]

(11]

(12]

Dierkes T, Dorn O, Natterer F, Palamodov V, Sietéth. Fréchet derivatives for some bilinear
inverse problems. SIAM J. Appl. Math. 2002;62(69262113.

Yildirim Aksoy N. Variational method for the soloti of an inverse problem. J. Comput. Appl. Math.
2017;312:82-93.

Babaniyi OA, Oberai AA, Barbone PE. Direct errordaonstitutive equation formulation for plane
stress inverse elasticity problem. Comput. Methiyisl. Mech. Engrg. 2017;314:3-18.

Vorovich Il. Nonlinear theory of shallow shells.8mer, New York; 1999.
Wriggers P. Nonlinear finite elements method. SypgimNew York; 2008.

Kolmogorov AN. On representation of continuous fimts of several variables as superpositions of
continuous functions of one variable. Dokl. AN SS$B57;114(5):953-956. (In Russian)

Braun J, Griebel M. On a constructive proof of Kobprov's superposition theorem. Constr.
Approx. 2009;30(3):653-675.

Hecht-Nielsen R. Theory of back-propagation nenetvorks. Proceedings of IJCNN. 1989;1:583—
604.

Gupta M, Jin L, Homma N. Stability of continuousi dynamic neural networks, in static and
dynamic neural networks: From fundamentals to adedntheory. John Wiley & Sons, Inc.,
Hoboken, NJ, USA; 2003.

Stanley KO, Miikkulainen R. Evolving neural netwsrkhrough augmenting topologies. Evol.
Comput. 2002;10(2):99-127.

© 2017 Obodan et al.; This is an Open Access artiit¢ributed under the terms of the Creative Consnéttribution License
(http://creativecommons.org/licenses/byj4®@hich permits unrestricted use, distributiondareproduction in any medium, provided
the original work is properly cited.

Peer-review history:

The peer review history for this paper can be aceg$ere (Please copy paste the total link in your
browser address bar)

http://sciencedomain.org/review-history/22077




