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Abstract 
 

This paper considers the coefficient inverse problem for the nonlinear boundary problem of von Karman 
equations. The Fréchet differentiability of the inverse operator is proved and its neural network 
approximation is constructed with neuroevolution augmented topology model. The model used proves 
efficient to solve the coefficient inverse problem even for the parameters values close to those 
corresponding to singular solutions of the direct problem.  
 

 

Keywords: The coefficient inverse problem; nonlinear boundary problem; von Karman equations; the 
inverse operator; the Fréchet differentiability; neuro-evolution augmented topologies. 

 

1 Introduction 
 
The coefficient inverse problem for nonlinear boundary problem of PDEs (particularly, of von Karman 
equations) is conventionally solved with the employment of various optimization methods like the Newton, 
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the Gauss-Newton, the gradient descent and others [1]. This approach implies that some regularization 
technique is applied to iterative process: Engl and Kügler [2] present a brilliant review of various inverse 
problems and regularization techniques with a particular emphasis on nonlinear ones.  
 
Alternatively, one can employ a neural network approximation for the inverse operator that maps traces of 
the direct (forward) problem solution onto unknown functions of the inverse one. To this end, these solutions 
are discretized and a learning sample for a neural network is selected in such a way that the values of the 
inverse problem function corresponding to its vectors form a compact set. Such approach guarantee that the 
inverse problem is regularized provided the direct problem does not possess singular points on its definition 
domain and that the traces of the direct problem solution corresponding to the inverse problem solution are 
close enough to the specified ones. Both formulations require that the Fréchet differentiability of the inverse 
operator be proved [3]. The paper [4] considers the inverse problem for non-linear time-dependent 
Schrödinger equation; the problem is formulated using variational approach. The author investigates the 
existence, uniqueness, and Fréchet differentiability of its solution. The paper [5] deals with inverse problems 
in elasticity with application to cancer identification.  
 
The coefficient inverse problem for von Karman equations forms the subject of the present paper. The 
respective direct problem – the nonlinear boundary problem of von Karman type – belongs to nonlinear 
elliptic problems for partial differential equations; the problem features – multiple solutions. This fact 
explains the complexity to solve the inverse problem, namely, one should, on the one hand, explore the 
solvability and Fréchet differentiability of the inverse problem and, on the other hand, apply methods of 
artificial intelligence to approximate its solution. The present paper employs the constructive neural network 
(neuroevolution of augmenting topologies) to this end. 
 

2 Materials and Methods  
 
2.1 Problem statement 
 
The subject of the present study is the coefficient inverse problem for the nonlinear elliptic equations of von 
Karman-type. The respective direct problem reads as follows: 
 

( )( ) ( )( ) 21121111 11 HuHBuuHAQ ijijkl
jlik

kl
ijkl

ij λ=∇+∇−∇∇≡ ,              (1) 

 

( )( ) ( )( ) 011 1112122 =∇+∇−∇∇≡ uHBuuHAQ ijijkl
jlik
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ijkl
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{ }TQQQ 21,= , { }THHH 21,= , { }Tuuu 21,=  

 

The definition domain ( ){ }2
21, RxxXX ∈==Ω  for solution vector-function ( )( )XHXu ,  is assumed to be 

a bounded Lipchitz domain in 2R  with a boundary Γ , which is piecewise smooth. Here ( ) 011 >HAijkl , 

( ) 012 >HAijkl , ( ) 01 >HBij  are specified functionals of the known function 1H ; 2H  is the right-hand 
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where n  is the unit normal vector to the surface Ω . Of fundamental importance is a set of admissible 
solutions for the direct and inverse problems defined as  
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Hereinafter 1
2ΩW  is the Sobolev space; 1ΩV , 2

ΩV , 12
ΩV  are the Hilbert spaces with norms and scalar products 

defined as  
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respectively. The functions that belong to the set H
~

 are equibounded, monotonic, and convex, and, 

consequently, the set H
~

 is a compact set. Input data for the inverse problem are known traces of the 
function u  at the specified points rγ  
 

( ) *, uHu r =γ , Rr ,1= .                        (6) 

 
In the framework of variational approach, this allows the following equivalent statement of the inverse 
problem in question 
 

( )( ) 1212
*,,

ΩΩ
= VrV

uHu γρ , HH
~∈ , 12*

Ω∈Vu . (7) 

 

The discrepancy functional (7) represents the distance in the space 12
ΩV  between the calculated ( )Hu r ,γ  and 

specified *u  solutions of the direct problem. Thus, the solution of the inverse problem is defined as 
 

( )( )*,,minarg 12 uHuH rV
γρ

Ω
= , HH
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2.2 Properties of the inverse problem model 
 
Of primary interest is the Fréchet differentiability of the vector-functions u  with respect to H ; the 
respective proof utilizes definition of the generalized solution, namely: the vector-function 

( ) 12
21, Ω∈= Vuuu T  is the generalized solution of the direct problem, if the following holds 
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for the arbitrary vector-function ( )Tvvv 21,= , 12
Ω∈Vv . The Riesz theorem guarantees the existence of 

operators M , N  that enables the operator representation of (9): 
 

( )( )211 ,HHuNu = , 

( )( )212 ,HHuMu = . 
(10) 

 
Vorovich [6] proves that these operators are strongly continuous. To prove their Fréchet differentiability, we 
consider a function 0H  (such that ( )0Hu  is non-singular solution) and its perturbation HHH ∆+= 0  with 

ε≤∆H  (ε  is small) and examine the respective solutions 
( )
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non-singularity ensures that 1=µ  is not an eigenvalue of the following equations  
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where { }Tuuu 21,∆∆=∆ , ( ) ( ) ( ){ }TuMuNuG ,= . Since ε  is small, the following holds true 
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Furthermore, spaces 
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and in  
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With operators pD  [6] defined as 

 



 
 
 

Obodan et al.; ARJOM, 7(3): 1-9, 2017; Article no.ARJOM.37856 
 
 
 

5 
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the inequality (14) yields to 
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If one estimates each term of the generalized solution using the embedding theorems, one finally obtains 
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where 21,mm  are constants. Thus, the principal part of the increment of operators M  and N  are linearly 

proportional to H∆  and finite, and thereby the operators are the Fréchet differentiable. 

 
2.3 Methods to solve the direct and inverse problems 
 
To represent the unknown functions of the direct and inverse problems, we introduce two nets with nodes 

pX , Pp ,1=  and kX , Kk ,1= , respectively; specified values *U  are determined at the points rX , 

Rr ,1= .  
 
To solve the direct problem, we use the finite element methods [7]. The definition domain is meshed, and 
solutions of the direct and inverse problems are approximated in the local coordinate system using their 

nodal values { }pU , { }*
pU , { }*

kH , Pp ,1= , Kk ,1= . Thus, for the specified vector { }kHH 00 = , a solution of 

the direct problem (1)-(3) satisfies the finite system of nonlinear algebraic equations 
 

( ) QHUK =( .                       (18) 
 

Hereinafter, ( )TUUU ,, 21=  is the vector of nodal values for the vector function u ; NL KKK +=  is the 

transformation operator with the linear [ ] [ ][ ]L
T

LL BDBK =  and nonlinear [ ] [ ][ ]N
T

NN BDBK =  terms; LB  

and NB  are shape functions matrices; Q  is the vector of discretized right-hand terms. 
 
In turn, a solution of the inverse problem satisfies (8) and, consequently, its discrete counterpart 
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**ρ . This determines the function ( )** UZH = , where 

( )*UZ  is the approximate nonlinear mapping ** HU → . 
 
The Kolmogorov superposition theorem [8,9] states that any function of many variables can be represented 
as a cascade superposition of linear operations and nonlinear functions of a single variable. Hecht-Nielsen 
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[10] proposes to use multilayer perceptron (MP) to implement the structure of the Kolmogorov theorem (see 
[11] for a detailed description of MP and an extended discussion of its ability to implement this structure and 

approximate nonlinear mappings). For the problem under study, one clamps the known vector-function *U  

to perceptron inputs and uses *H  as the corresponding desirable output values. The trained net 

approximates the discretized inverse operator ( )*UZ  with an error, which depends on perceptron structure, 
type of an activation function, training algorithm, representativeness of a sample, etc [11].  
 

The principal problem of such approximation is that whether the discretized solution ( )*UH  is correctly 

determined at points *U  that do not belong to the learning sample used. To this end, one considers distance 

between elements *1U  and *
2U  of the sample defined as ( ) ( ) ( )*

2
*
1

*
2

*
1 , UZUZUU −=ρ . Vorovich proves [6] 

that if ( ) ερ ≤*
2

*
1 ,UU  and the non-singular solution ( )1u  corresponding to *

1U  exists for ( )*
11 UZH =  then the 

non-singular solution ( )2u  exists for ( )*
22 UZH =  likewise. Moreover, ( ) ( ) ( )εδ≤− 21 uu  and ( ) 0→εδ  as 

0→ε . 
 

The topological lemma states [6] that if the one-to-one correspondence UH
~~

: →ℑ  is continuous and the 

subset HH
~* ⊂  is dense in H

~
, then the inverse one-to-one correspondence is also continuous 

**1 : HU →ℑ−  on *U . Therefore, if the learning sample *H  is compact and respective solutions u  are 
non-singular then the lemma holds and one can correctly determine ( )uH . Consequently, the inverse 

operator ( )UH  can be determined for all non-singular nonlinear solutions ( )HU  and it is possible to 
construct its neural network approximation. 
 
It is worth stressing that a fully-connected perceptron is prone to redundant representation of the function to 
be approximated: connections between neurons that do not match those of real-world system tend to impair 
the efficiency of training algorithm, degrade solution quality and make it logically non-transparent. To 
overcome the problem, we employ neuro-evolution augmented topology (NEAT) [12] to generate the 
optimal network structure.  
 
This method uses specific genetic algorithm framework to establish neural networks evolution. Thus, each 
chromosome corresponds to a neural network, while its gen describes a separate connection (its input and 
output neurons, its weight and activity). The network features an innovation list that is a tool to store 
information about newly-created neurons and connections. This allows unified description of all neurons and 
connections for all networks over all generations and thereby reasonable way to mutate the networks and 
cross them over. The generalization error (19) calculated for a specified epoch is used as a value of fitness 
function for a respective chromosome; a conventional back-propagation algorithm is used to train networks. 
 
Of fundamental interest is an ability of the approach described above to approximate the inverse operator 

( )UHH =  for a strongly nonlinear function of the direct one ( )HU , even in the neighbourhood of its limit 
points; of course, this suggests that the network has been trained using a sample selected over the 
representative domain of direct problem solution. The representativeness means that the domain should 
reflect variation of the model at hand.  
 

3 Results and Discussion 
 
The method described above was applied to build neural-network approximations to determine          
unknown parameters of the right-hand terms for the rectangular definition domain 

( ){ }bxbaxaxxXX ≤≤−≤≤−=Ω 2121 ,,,: .  
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(a) 

Fig. 1. The optimal structures of neural networks restoring the right

 
The wide-ranging simulation allows concluding that variability of the direct problem solution strongly 
affects the optimal network structure. Fig
hand terms. Fig. 2 shows actual and recovered values of parameters, namely, amplitudes of the right
member λ  (Fig. 2a) and the spanning angles 
various numbers of testing set; solid curves stand for actual values, whereas the values restored using MP 
and NEAT are designated by dotted and dashed curves, respectively. 
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Fig. 2. True and recovered values of parameters for various amplitudes of the right
The abscissa values correspond to various numbers of testing set; solid, dotted and dashed curves stand for actual 

values and those restored by MP and
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(c) 
 

The optimal structures of neural networks restoring the right-hand term of a certain class.
a - ( )XH A , b - ( )XHB ,c - ( )XHC . 

ranging simulation allows concluding that variability of the direct problem solution strongly 
affects the optimal network structure. Fig. 1 exhibits the optimal structures corresponding to the above right

actual and recovered values of parameters, namely, amplitudes of the right
(Fig. 2a) and the spanning angles ϕ  (Fig. 2b) for ( )XH A . The abscissa values correspond to 

various numbers of testing set; solid curves stand for actual values, whereas the values restored using MP 
and NEAT are designated by dotted and dashed curves, respectively.  

(b) 
 

Fig. 2. True and recovered values of parameters for various amplitudes of the right-hand member
The abscissa values correspond to various numbers of testing set; solid, dotted and dashed curves stand for actual 

values and those restored by MP and NEAT, respectively. a - amplitudes of the right-hand member 
b - the spanning angles ϕ  
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Fig. 3 shows average errors (difference between actual and recovered values) 
vs. noise amplitude σ  for the same parameters (Figs. 3a and b correspond to the restoration of 

The noise is uniformly distributed and perturbs 

amplitude (with respect to amplitude of the perturbing quantity). Dotted and dashed curves denote the same 
characteristics. One may conclude that NEAT model performs better than MP; moreover, it performs two 
times better for the parameters values close to those corresponding to singular solutions 
plain MP is inapplicable to such cases.
 

(a) 

Fig. 3. Average errors (difference between actual and recovered values) 

Dotted and dashed curves stand for values restored by MP and NEAT, respectively. a 
member 

 

4 Conclusion 
 
The variational statement of the coefficient inverse problem for von Karman equations is introduced; the 
Fréchet differentiability of the inverse operator is proved. 
 
In turn, the Fréchet differentiability allows neural network approximatio
construct the optimal approximation, we apply neuro
 
In the framework of wide-ranging simulation, NEAT model proves more efficient in comparison with 
conventional multilayer perceptron MP, a
values close to those corresponding to singular solutions of the direct problem.
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