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Abstract

The Cauchy-Dirichlet problem of the Helmholtz equation yields unstable solution, which when
solved with the Quasi-Boundary Value Method (Q-BVM) for a regularization parameter α = 0.
At this point of regularization parameter, the solution of the Helmholtz equation with both
Cauchy and Dirichlet boundary conditions is unstable when solved with the Q-BVM. Thus, the
quasi-boundary value method is insufficient and inefficient for regularizing ill-posed Helmholtz
equation with both Cauchy and Dirichlet boundary conditions. In this paper, we introduce an
expression 1

(1+α2)
, α ∈ R, where α is the regularization parameter, which is multiplied by w(x, 1)

and then added to the Cauchy and Dirichlet boundary conditions of the Helmholtz equation. This
regularization parameter overcomes the shortcomings in the Q-BVM to account for the stability
at α = 0 and extend it to the rest of values of R.
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1 Introduction

In recent times, ill-posed problems have drawn the attention of mathematicians and scientists in
general, in the global world. These problems cause either distortion in the signal processes or breaks
in the vibrating strings. An ill-posed problem comes as a result of imposed boundary conditions on
the Helmholtz equation. Thus, the stability of the solution of Helmholtz equation depends on the
type of the boundary conditions imposed on the equation.

Definition 1.1. A Laplace-type operator occuring in the Helmholtz equation A : Ω ⊂ H → H,

where A = ∂2

∂x2 + ∂2

∂y2 and H is the Hilbert space, is called Hölder-continuous on Ω with constant γ

and exponent p if there exists γ ≥ 0 and p ∈ (0, 1] such that

∥Aw1(x, y)−Aw2(x, y)∥ ≤ γ∥w1(x, y)− w2(x, y)∥p, ∀ w1, w2 ∈ Ω ⊂ H.

If p = 1, then A(.) is called uniformly Lipschitz-continuous on Ω, with Lipschitz constant γ. See
[1].

Since the pioneering work by [2] who introduced Tikhonov Regularization Method (TRM) a lot of
studies have been done to regularize the Helmholtz equation with Cauchy and Dirichlet boundary
conditions in the Hilbert space. The authors in [3], introduced boundary knot method for regularizing
inhomogeneous Helmholtz equation. In [4], the authors obtained regularized solution for ill-posed
Helmholtz equation with discontinuities at the points in its domain. The authors in [5] introduced
the Convex Regularization Method (CRM) for solving Cauchy problem of the Helmholtz equation
in the Hilbert space. They obtained the continuity of Laplace-type operator A−1(.) occuring in the
Helmholtz equation. They showed that the solution of the Helmholtz equation by using CRM was
better as compared to Iterative Regularization Method (IRM) for different values of regularization
parameter.

One of the methods of regularization which gives vivid picture of stability of solution of the
Helmholtz equation is the Q-BVM. In this method, it is assumed that the inverse Laplace-type
operator A−1(.) occuring in the Helmholtz equation exists from a Hilbert space to a subHilbert
space Ω ⊂ H but not continuous. When the continuity of A−1(.) is restored, then the A(.) is
well-posed in the Hadamard sense. For example, see papers by [6, 7]. In order to achieve the
continuity of A−1(.), several algorithms have been introduced, see [8]. The authors in [9, 10], added
a product of a regularization parameter α ∈ R+ and a boundary condition at non-fixed spatial
variable to the boundary deflection in the Cauchy data imposed on the Helmholtz equation. In [11],
the author regularized Helmholtz equation by subtracting αw′(0) instead of adding αw(0) to the
initial condition w(T ) in heat conduction problem. In [12], the author implemented the Q-BVM
to regularize a linear elliptic equation. Using the Q-BVM, authors in [13] regularize unbounded
Dirichlet problem of the Poisson equation in L2(R). In [14] and [15], authors regularized nonlinear
and linear heat equation, respectively.

One of such studies which is recent and of interest was given by [16]. In their method, the
regularization parameter α is restricted for only positive real numbers, but not for other values
of real numbers. The small range of values of α used in [16] and others, do not give the liberty to
explore the full characteristics of the (well-posed) Helmholtz equation in the Hilbert space.
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In this paper, we extend the range of values of the regularization parameter fromR+ toR to account
for the fully characteristics (stability) of the Helmholtz equation with both Cauchy and Dirichlet
boundary conditions in the Hilbert space. Thus, this method of regularization of the Helmholtz
equation with both Cauchy and Dirichlet boundary conditions accounts for stability at α = 0 and
the rest of values of α ∈ R. At α = 0 is a crucial point in regularizing Cauchy-Dirichlet problem
of the Helmholtz equation in the Hilbert space. In order to do this, we introduce an expression

1
(1+α2)

, α ∈ R, which is multiplied by w(x, 1) and then added to the Cauchy and Dirichlet boundary

conditions of the Helmholtz equation.

This paper is organized as follows. In section 1, we provide the introduction to Q-BVM for solving
ill-posed Helmholtz equation with both Cauchy and Dirichlet boundary conditions. In section 2,
we show that the Helmholtz equation with both Cauchy and Dirichlet boundary conditions is ill-
posed. Section 3 deals with modified Q-BVM. Thus, we show that the Helmholtz equation with
both Cauchy and Dirichlet boundary conditions is well-posed in the sense of Hadamard. In section
4, we discuss our results and compare it to existing methods of regularization. Section 5 contains
the conclusion of the paper.

2 Solving An Ill-posed Cauchy-Dirichlet Problem of the
Helmholtz Equation Using Q-BVM

In this section, we show that the solution of the Helmholtz equation with imposed both Cauchy
and Dirichlet boundary conditions is unstable. Thus, the small perturbations in these boundary
conditions result in large changes in the solution of the Helmholtz equation.

Lemma 2.1 (Data Compactibility Condition). A Laplace-type operator occuring in the Helmholtz
equation A : Ω ⊂ H → H, denotes a bounded region in R2 having a smooth boundary ∂Ω. The
problem below:

∆w(x, y) = 0 in Ω

∂w(x, 0)

∂y
= 0 on ∂Ω

has no solution unless the data functions on the right hand sides of the above two equations satisfy
compactibility condition ∫

Ω

0dΩ =

∫
∂Ω

0dx.

See [17].

The Helmholtz equation together with both the Cauchy and the Dirichlet boundary conditions is
ill-posed in the sense of Hadamard. The Cauchy-Dirichlet problem of the Helmholtz equation is as
follows:

∂2w(x, y)

∂x2
+

∂2w(x, y)

∂y2
+ k2w(x, y) = 0, 0 ≤ x ≤ 2π, 0 ≤ y ≤ 1 (1)

w(0, y) = w(2π, y) = 0, 0 ≤ y ≤ 1

w(x, 0) = sin(nx), 0 ≤ x ≤ 2π

∂w(x, 0)

∂y
= 0, 0 ≤ x ≤ 2π,
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where k is the wave number.

By the method of separation of variables, we obtain the solution of equation (1) in the cartesian
coordinates as:

w(x, y) =
∞∑

n=0

cosh
(√

((
n

2
)2 − k2)y

)
sin(

nx

2
) sin(nx) (2)

We show that the solution that appears in equation (2) is unstable with respect to the small
changes in the boundary conditions. In equation (1), we choose x1 = 0 in boundary condition
w(x, 0) = sin(nx) and the corresponding solution is obtained as follows:

w1(x, y) = 0

Again, we perturb from x1 = 0 to x2 = δ, where 0 < δ ≪ π
24

and the corresponding solution is
obtain as:

w(x, y) =

∞∑
n=1,3

4 sin(nδ) cosh
(√

((
n

2
)2 − k2)y

)
sin(

nx

2
) sin(nx)

The change in the boundary condition is observed as:

lim
n→∞

|w(x1, 0)− w(x2, 0)| = lim
n→∞

|0− sin(nδ)|

lim
n→∞

|w(x1, 0)− w(x2, 0)| → 1 as n → ∞.

The above result implies that there is a small change in the boundary condition.

The corresponding change in the solution w(x, y) is

lim
n→∞

|w1(x, y)− w2(x, y)| = lim
n→∞

|0−
∞∑

n=1

4 sin(nδ) cosh
(√

((
n

2
)2 − k2)y

)
sin(

nx

2
) sin(nx)|

lim
n→∞

|w1(x, y)− w2(x, y)| ≤ lim
n→∞

∞∑
n=1

4e(
√

((n
2
)2−k2)y)

lim
n→∞

|w1(., 1)− w2(., 1)| ≤ lim
n→∞

∞∑
n=1

4e
√

((n
2
)2−k2)

Thus,

lim
n→∞

|w1(., 1)− w2(., 1)| → ∞ as n → ∞.

This implies that a small change in the boundary condition w(x, 0) from x1 = 0 to x2 = δ results in
a large change in solution. Thus, the solution (2) to equation (1) is unstable in the Hilbert space.
The equation (1) violates the third condition of well-posedness. Hence, equation (1) is ill-posed in
the sense of Hadamard.

However, we showed that Q-BVM cannot be used to restore stability of solution of Hadamard
equation at α = 0. Thus, the continuity of A−1(.) in the Helmholtz equation is not restored. The
discontinuity of A−1(.) disturbs numerical computation of solution of the Helmholtz equation in
the Hilbert space. To see this problem of discontinuity of A−1(.) in the Helmholtz equation, let us
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consider the following:

∂2w(x, y)

∂x2
+

∂2w(x, y)

∂y2
+ k2w(x, y) = 0, 0 ≤ x ≤ 2π, 0 ≤ y ≤ 1 (3)

w(0, y) = w(2π, y) = 0, 0 ≤ y ≤ 1

w(x, 0) + αw(x, 1) = sin(nx), 0 ≤ x ≤ 2π

∂w(x, 0)

∂y
= 0, 0 ≤ x ≤ 2π,

with the solution

w(x, y) =

∑∞
n=0 cosh

(√
((n

2
)2 − k2)y

)
sin(nx

2
) sin(nx)(

1 + α cosh
(√

((n
2
)2 − k2)

)) . (4)

We can see that when α = 0, then equation (3) and the function which appears in equation (4)
become equations (1) and (2), respectively. Hence, by Q-BVM, equation (3) is (unstable) ill-posed
in the sense of Hadamard.

3 Main Results

The solution of the Cauchy-Dirichlet problem of the Helmholtz equation is unstable, which when
solved with Q-BVM for regularization parameter α = 0. At this point, the boundary conditions in
equation (3) and the solution that appears in equation (4) become equations (1) and (2), respectively.
Thus, Helmholtz equation together with Cauchy and Dirichlet boundary conditions is (unstable)
ill-posed in the sense of Hadamard.

Definition 3.1 (First Vanishing Theorem). A Laplace-type operator occuring in the Helmholtz
equation A : Ω ⊂ H → H, be continuous function on the closure of the domain Ω̄. Assume that
A ≥ 0 in the Ω̄ and that

∫ ∫
Ω
Aw(x, y)dxdy = 0. Then Aw(x, y) is identically zero. See [18].

In this paper, we modify the Q-BVM to account for the stability at α = 0. By the dint of this
method, we introduce an expression 1

(1+α2)
, where, α ∈ R is the regularization parameter, in w(x, 0)

of Cauchy-Dirichlet problem of the Helmholtz equation. The product of the regularization term
1

(1+α2)
and w(x, 1) is added to w(x, 0) in the both Cauchy and Dirichlet problems of the Helmholtz

equation presented in equation (1). Hence, the name modified Q-BVM. This method suppresses
the high frequency component in the solution of the Helmholtz equation, which accounts for the
rapid decay of the solution in the Hilbert space.

∂2w(x, y)

∂x2
+

∂2w(x, y)

∂y2
+ k2w(x, y) = 0, 0 ≤ x ≤ 2π, 0 ≤ y ≤ 1 (5)

w(0, y) = w(2π, y) = 0, 0 ≤ y ≤ 1

w(x, 0) +
1

(1 + α2)
w(x, 1) = sin(nx), 0 ≤ x ≤ 2π

∂w(x, 0)

∂y
= 0, 0 ≤ x ≤ 2π,

By the method of separation of variables, we obtain (unique) solution of the equation (5) in the
cartesian coordinates as follows:

w(x, y) =

∑∞
n=0 cosh

(√
((n

2
)2 − k2)y

)
sin(nx

2
) sin(nx)(

1 + 1
(1+α2)

cosh
(√

((n
2
)2 − k2)

)) (6)
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We show that equation (5) is well-posed. Firstly, we see that the Neumann boundary condition
vanishes on the boundary of the domain, the function that appears in equation (2) is a solution to
equation (1).

Secondly, we prove that equation (5) has only one solution.

Proof: By contradiction, we suppose that equation (5) has two different smooth solutions denoted
by u(x, y) and v(x, y). Also, let

w(x, y) = u(x, y)− v(x, y).

Multiplying both sides of equation (5) by w(x, y) and integrating over ([0, 2π]× [0, 1]), we obtain∫ 1

0

∫ 2π

0

w(x, y)∆w(x, y)dxdy + k2

∫ 1

0

∫ 2π

0

|w(x, y)|2dxdy = 0 (7)

By the first vanishing theorem, the right hand side is zero. Applying the Green’s first identity to
the first term on the left hand side of equation (7), we obtain∫ 1

0

∫ 2π

0

w(x, y)∆w(x, y)dxdy = −
∫ 1

0

∫ 2π

0

|∇w(x, y)|2dxdy (8)

Substituting equation (8) into equation (7) yields

−
∫ 1

0

∫ 2π

0

|∇w(x, y)|2dxdy + k2

∫ 1

0

∫ 2π

0

|w(x, y)|2dxdy = 0. (9)

For equation (9) to hold, we restrict∫ 1

0

∫ 2π

0

|w(x, y)|2dxdy = 0

By the first vanishing theorem, we obtain

⇒ w(x, y) = 0.

Also, we can see from equation (9) that

−
∫ 1

0

∫ 2π

0

|∇w(x, y)|2dxdy = 0

⇒ |∇w(x, y)| = 0

⇒ w(x, y) = 0.

This implies that w(x, y) is a smooth function, constant in the domain and vanishes on the boundary
of the domain. Thus,

u(x, y) = v(x, y)

Hence, the function that appears in equation (6) is the only solution to equation (5).

Last but not least, we show that the small changes in the both Cauchy and Dirichlet boundary
conditions result in small changes in the solution that appears in equation (6).

In equation (5), we perturb from x1 = 0 to x2 = δ, where 0 < δ ≪ π
24
, and the change in boundary

conditions is observed as:

lim
n→∞

|w(x1, 0)− w(x2, 0)| → 1 as n → ∞.
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The above result implies that there is a small change in the boundary condition.

The corresponding change in the solution w(x, y) is

lim
n→∞

|w1(x, y)− w2(x, y)| ≤ lim
n→∞

|
∞∑

n=0

cosh
(√

((n
2
)2 − k2)y

)
(
1 + 1

(1+α2)
cosh

(√
((n

2
)2 − k2)

)) |
lim

n→∞
|w1(., 1)− w2(., 1)| = lim

n→∞
|

∞∑
n=0

cosh
(√

((n
2
)2 − k2)

)
(
1 + 1

(1+α2)
cosh

(√
((n

2
)2 − k2)

)) |

lim
n→∞

|w1(., 1)− w2(., 1)| ≤ lim
n→∞

∞∑
n=0

e

(√
((n

2
)2−k2)

)
(
1 + 1

(1+α2)
e

(√
((n

2
)2−k2)

))
At α = 0, we obtain

lim
n→∞

|w1(., 1)− w2(., 1)| = lim
n→∞

∞∑
n=0

e

(√
((n

2
)2−k2)

)
(
1 + e

(√
((n

2
)2−k2)

))

We can see that the denominator grows faster than the numerator, we obtain

lim
n→∞

|w1(., 1)− w2(., 1)| → 1 as n → ∞.

This implies that the solution which appears in equation (6) is stable to the small changes in the
boundary conditions. Thus, the continuity of A−1(.) is restored. Hence, equation (5) together with
regularized Cauchy and Dirichlet boundary conditions is well-posed in the sense of Hadamard in
the Hilbert space.

4 Results and Discussion

In this section, we the present the main findings of the work. In figure 1, we display the result
by equation (3) for regularization parameter α = 0, in two dimensions. In figure 4, we display the
solution of equation (5) given by a red solid graph and that of equation (3) by a blue solid graph.
At α = 0, we observed that the equations (1) and (3) yield the same solution. We can see from
figures 1, 2 and 3 that there is a gradual increase in the solution given by equation (5), whereas the
solution of equation (3) increases sharply. This implies that equation (5) yields a stable solution.
On the other hand, the solution of equation (3) is unstable. For instance, a small change in y results
in large change in the solution w(π, y); indicated by a blue solid graph (see figure 3). But, the red
solid graph gives consistent, accurate and stable results. Thus, a small change in y leads to a small
change in the solution w(π, y). In addition, we display the solution of equation (5) for α = 0.1
in two dimensions and different values of α in one dimension in figures 4 and 5, respectively. We
observed that the solution of equation (5) becomes consistent and stable as α becomes small.
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Fig. 1. Solution by the Q-BVM at α = 0 Fig. 2. Solution by the MQ-BVM at α = 0

Fig. 3. Comparison of solutions by the Q-BVM and by the MQ-BVM at α = 0 in one

dimension

Fig. 4. Solution by the MQ-BVM at

α = 0.1

Fig. 5. Solutions by the MQ-BVM at

different values of α
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5 Conclusion

We observed that the solution of both Cauchy and Dirichlet problems of the Helmholtz equation
is stabilized by the MQ-BVM for regularization parameter α = 0. On the other hand, the Q-BVM
cannot stabilize the solution of the Helmholtz equation together with both Cauchy and Dirichlet
boundary conditions at α = 0. Also, solution of Helmholtz equation together with both Cauchy
and Dirichlet boundary conditions by the classical method is the same as one by the Q-BVM at
α = 0, which in turn, is ill-posed.

Last but not least, the MQ-BVM provides accurate, consistent and stable solution of the Helmholtz
equation together with both Cauchy and Dirichlet boundary conditions when the regularization
parameter becomes small as compared to other methods of regularization.
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