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Abstract

This article is devoted to the lattice-theoretic analysfi Beal's conjecture. We discuss whether this
conjecture is deducible from the laws of logic of divisipil

Keywords: Beal's conjecture; Diophantine equation; propositiongictdattice of divisibility.
1 Introduction

Usually, when Beal's conjecture is formulated by assgtiat the Diophantine equatidfi + B? = C" in
positive integersi, B, C,p, q,r with A, B andC being coprime and all, q,r being greater than 2 has no
solution (see papers [1,2,3], just to name a few), theroepcondition is there merely to avoid trivialities.

But one may naturally raise the question whether the demasidedtaneous or pairwise coprimality of
positive integergl, B andC has more intrinsic relation to the resolution of this cciojes. Particularly, can
the concept of a lattice of divisibility and the @sponding logic based on such a lattice play more important
role in proving or disproving this conjecture?
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This article will be devoted to the lattice-theoretitalysis of Beal's conjecture.

2 Lattice of Divisibility

Let us begin considering a bounded lattice (N,A,v,1,0) formed by the natural numbers under the
operations of taking the greatest common divigerl] and least common multiplécfn), with divisibility as
the order relation, namely,

Va,b € N: a < bif adividesbh . 1)
The lattice meea is given bygcd and the lattice joiiv is given bylcm as follows:

a<beoa=aAb=gcd(ab)=a @)
a<beoeb=avb=lem(a,b)=b '’
The crucial observation in the proof of (2) is that theagest common divisor and least common multiple
satisfy the axioms for the lattice meet and join. To be, axi@matic identities hold for all elementsb, ¢

of the lattice of divisibility = (N,A,v,T, L) obtained by switchingcd andicm with the lattice operations
andv preserve true, namely,

aAb=bAa=gcd(ab)=gcd(h,a)

aVb=bVa=Ilecm(a,b) =lcm(b,a) @)
aAN(bAc)=(aAb)Ac = gcd(a,gcd(b, c)) = gcd(gcd(a,b),c) 4
av((ve)=(avb)Vvc= lcm(a,gcd(b, c)) = lcm(gcd(a, b),c) @
av(aAnb)=a= lcm(a,gcd(a, b)) =a 5)
aAN(avb)=a= gcd(a, lem(a, b)) =a '

aVa=a=Ilm(a,a) =a ’ ©6)

aha=a=gcd(ala)=a

where (3), (4), (5), and (6) present commutative laws, &gsaer laws, absorption laws, and idempotent
laws, respectively.

From the expressions (2), it immediately follows thatgfacha € N

l1<ael=aAl=gcd(al)=1

l1<aeoa=avli=ilm(a,1)=a '’ ()
which makes 1 the bottom of the lattice of divisibility
Let us assume that for eagte N the following definitions hold

gcd(a,0)=a

lem(a,0) =0 (8)

Then these definitions readily imply

! See for detail papers [4,5].
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a<0eoa=aA0=gcd(a,0)=a

a<0eo0=av0=Ilcm(a,0)=0 "~ ©)
which makes 0 the top of the lattice of divisibilfy Thus, for every in N
1<a<0 . (10)

3 Pseudo-complements

Now, let us take into consideration coprime natural numéenrsdb, i.e., ones whose greatest common
divisor being 1, namelycd(a, b) = 1.

In the lattice-theoretic terms, the elememtzndb identified with coprime natural numbers can be regarded
as pseudo-complementsf each other (analogous to pseudo-complements in a Hegtiedpra, see, for
example [6]). Indeed, for such elements one gets

aAb=1 o gcd(a,b)=1 , (11)
while
aVb#0 & Ilem(a,b) =ab . (12)

Let us denotea pseudo-complemerdf the element as the unary operatiora, thenb = =a and
equivalently,a = =b. This gives us the following involution law: Since tpseudo-complement is not
unique,——a need not be equivalent &

Along these lines, the lattice of divisibility= (N = {1,2,3,...},A,v, 1,0,1) is an algebra with two binary
operations (i.e., the meatand the joinv), one unary operation<), and two nullary operationsl (and0).

4 Finite Sublattices of Divisibility

Consider the partially ordered by divisibility s&f = (a, =a, +):

L, =(a,—a,+) = {1,a,-a,a+ —a,a-a,a? + a-a,—a? + a-a,a’-a + a-a?}, (13)
wherea, —a € N anda? and—a? denotea - a and—a - =a, respectively.
Using Euclid's algorithm [8] one can find

gcd(b,a) = ged(b —a,a)

b-a , (14)

lcm(b, a) = m

So, it is readily can be proved that

2 Let us note that due to the definition of set &tyugsee, for example [7]), all the sets mentioriadthis paper do not contain
repetitions, e.g., neither # 1,—a # 1 nora # —a.
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an-a=1
anN(a+-a)=1
aha-a=a
an(a®+a-a)=a
aA(—a?+a-a)=1
aAn(a*-a+a-a?)=a

aV-a=a-a
aVv(a+-a)=a*+a-a
aVana=ana

aVv (a®> +a-a) =a*+a-a

aV (=a?+ a-a) = a-a? + a?-a
aV (a®*-a + a—-a?) = a®-a + a-a?

“aA(a+-a)=1
aANa-a = -a
—aAn(a®+a-a)=1

—a A (=a? + a—a) = —a
—a A (a®=a + a-a?) = —a

—aV(a+-a) =-a®+a-a
—aVa-a=a-a
2 _ 2 2

—aV (a* +a-a) =a*-a+a-a
—aV (=a%?+a-a) = —a?+a-a
—aV (a®-a + a-a?) = a’-a + a-a?

(a+-a)ra-a=1
(a+-a)A(a?+a-a)=a+ -a
(a+-a)A(=a?+a-a)=a+ -a
(a+ —a) A(a?—a+a-a?)=a+ —a

(a + =a) Va-a = a*-a + a-a?
(a +=a) Vv (a? + a=a) = a’—a + a-a?
(a + =a) Vv (=a? + ana) = a?-a + a—a?
(a + —a) v (a®?-a + a-a?) = a?-a + a-a?

a-an(a®>+a-a) =a

a=a A (=a? + a-a) = —a

a-a A (a®-a + a-a?) = a-a

a-aV (a® + a-a) = a’-a + a—a?
a-aV (=a? + a-a) = a®-a + a-a?
a-aV (a?-a + a-a?) = a®>-a + a-a?

(a® + a=a) A (ma? +a-a) =a+ —a
(a® +a-a) A(a®>-a+a-a?) =a+ -a

(a® + a=a) V (=a? + a-a) = a?-a + a—a?
(a® + a=a) v (a®-a + a—a?) = a?—a + a—a?

(15)

(16)

17)

(18)

(19)
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Thus, every pair of the elements&f has an upper bound and a lower bound withinwhich means that
the setL, is a finite sublattice of divisibility, specifically,

va?, —a?: L, = (a,-a,+) € L=(N=1{123,..}AV,1,10) . (20)
Equally stated, the solutions to the Diophantine equationsitiy® coprime integers, that is,
c=a+-a (21)

make the lattice of divisibility,.
5 Squared Lattices of Divisibility

Let us take the lattice of divisibilitg? = (N2 = {12,22,32,..},A,v, 1,1,0) created by the squared natural
numbers and consider the following set partially ordered Ggidility £,2 = (a?, —a?,+):

[’az = (az, —|Cl2, +)
= {1%,a?% -a? a® + =a? a’=a? a* + a®=a?, —a* + a?—a?, a*-a? (22)
+ a2—|a4} ,
wherea?, —a® € N2,

Since

a? Ab? = ged(a?, b?) = [ged(a,b)]? = (a Ab)?

a? v b? =lem(a?, b?) = [lem(a,b)]> = (avb)? (23)

it is not hard to demonstrate that all the relations (139} will hold if one formally replaces and—a with
a? and-a?.

What is more, by the Pythagorean theorem there is atiablof£? that is closed under the binary operation
a? + —a?, namely,

Ja?,—a?: (a® + —a?) € L? . (24)
This implies that set (22) can be a sublattice of dhiity

3a?,—a% L2 = (@, —a%+) © £2=(N? ={1%2,2%2,3%,..}AV,5,1,0) , (25)
or, in other words, the solutions to the squared Diophantingiequia coprime integers

2 =a?+ —a? (26)

can form the squared lattice of divisibiliff.

6 Cubed Lattices of Divisibility

In similar manner, let us introduce the latticé= (N3 = {13,23,33,..},A,v,5,1,0) whose members are
cubed natural numbers partially ordered by divisibilityt s take into consideration the & =
(a3, —ad,+):
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Lz = (a3 -d3+)

= {13,a3,-a3,a® + —ad,a3-ad,a® + a®—-ad, —ab + a®-a3,a%-ad 27)
+ a3—|a6} )
wherea?, —a® € N3.
Again, given that
3 3 _ 3
a’*Ab? = (anb) (28)

alvb® =(avh)® ’
it is easy to see that replaciagand—a with a® and—a® all the relations (15) - (19) would hold true.

However, the peculiarity of this case is that accordinBeal's conjecture, the cubed lattice of divisibility
L3 = (N3 = {13,23,33,..},Av,1,1,0) cannot be closed under the binary operatiba- —a®, explicitly,

Aa3, a3 (@® +-a®) e L3 . (29)
This implies that the sef,z cannot be a sublattice of the cubed lattice of divisjbithat is,

Aa3,—a%: L = (a3,—a,+) c L3 =(N® ={13,23,33,..}AV,5,1,0) . (30)
Thus, the solutions to the cubed Diophantine equation in cojntegers

cA=ad+-a® (31)
cannot form the cubed lattice of divisibilii?.

Equivalently speaking, Beal's conjecture surmises thdattiee of divisibility induced by natural numbers
raised to the third (or higher) power cannot be endowedthattbinary operation® + —a® on its elements.

7 Algebra £3 as Applied to Logic of Divisibility

The lattice£® = (N3 = {13,23,33,...}A,v,,1,0) is an algebra that satisfies the following conditions:
1) (N3,AV) is a lattice of divisibility;
2) a®<b3®eoa®=(anb)3 b®=(avbh)?
3) anl=1,av0=0;

4) aN-a=1, aV-a=ana.

Let the mapM': x — {F, T}, wherex is an element of the lattic®, assign a truth value to a proposition
identified withx, specifically,

X=M(x) |, (32)

such thatM' (1) = F (i.e., false) andr (0) =T (i.e., true).
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8 Conclusion

If the axioms of the propositional logic relating to divisitgiare interpreted as terms of an algebfa=
(N3 = {13,23,33,..},AV, =,1,0), then they will be evaluated to the divisibility latticé, i.e., O, under any
assignment of values to the propositional formula's variables.

In other words, if the propositional formula always has #lees/0, then it isleduciblefrom the laws ofogic

of divisibility, so valid in divisibility logical sensgropositional formulas are exactly those that always lzav
value of 0.

This is similar to the notion that formulas valid in siaally logical sensare those that have a value of 1 in
the two-element Boolean algebra under any possible &ssigrof true and false to the formula's variables

(9].
In this fashion, the proposition
D =M(c®—-a3—=a?) (33)

will be true ifc® — a® — —a® = 0 for anyc?® € L3 being the pseudo-complement of batland-a, i.e.,
cAa=cA-a=1. However, since it is easy to demonstrate that ttiedaexpression® — a® — —a? is

not always 0 (unlike the expressior- a — —a which is a tautology in divisibility logical sense), it follows
that the Beal's conjecture cannot be prolggically, that is, it cannot be derivable by reasoning from the
laws of logic of divisibility.

But the fact that the truth of the proposition (33) cannot lberaiéned logically means that there does not
exist a general constructive methaaf solving the cubed Diophantine equation (31) in coprimatural
numbers.
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