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Abstract 
 

This article is devoted to the lattice-theoretic analysis of Beal's conjecture. We discuss whether this 
conjecture is deducible from the laws of logic of divisibility. 
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1 Introduction 
 
Usually, when Beal's conjecture is formulated by asserting that the Diophantine equation �� � �� � �� in 
positive integers �, �, �, 
, �, � with �, � and �  being coprime and all 
, �, � being greater than 2 has no 
solution (see papers [1,2,3], just to name a few), the coprime condition is there merely to avoid trivialities. 
 
But one may naturally raise the question whether the demanded simultaneous or pairwise coprimality of 
positive integers �, � and � has more intrinsic relation to the resolution of this conjecture. Particularly, can 
the concept of a lattice of divisibility and the corresponding logic based on such a lattice play more important 
role in proving or disproving this conjecture? 
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This article will be devoted to the lattice-theoretic analysis of Beal's conjecture. 
 

2 Lattice of Divisibility 
 
Let us begin considering a bounded lattice ℒ � �ℕ,∧,∨ ,1,0�  formed by the natural numbers under the 
operations of taking the greatest common divisor (���) and least common multiple (���), with divisibility as 
the order relation, namely,1 
 

∀�, � ∈ ℕ:  � ≤ � if � divides �     .       (1) 
 
The lattice meet ∧ is given by ��� and the lattice join ∨ is given by ��� as follows: 
 

� ≤ � ↔ � � � ∧ � ≡ �����, �� � �
� ≤ � ↔ � � � ∨ � ≡ �����, �� � �

     , (2)

 
The crucial observation in the proof of (2) is that the greatest common divisor and least common multiple 
satisfy the axioms for the lattice meet and join. To be sure, axiomatic identities hold for all elements �, �, � 
of the lattice of divisibility ℒ � �ℕ,∧,∨,⊺, ⊥� obtained by switching ��� and ��� with the lattice operations ∧ 
and ∨ preserve true, namely, 
 

� ∧ � � � ∧ � ≡ �����, �� � �����, ��
� ∨ � � � ∨ � ≡ �����, �� � �����, ��     ,       (3) 

 
� ∧ �� ∧ �� � �� ∧ �� ∧ � ≡ ���&�, �����, ��' � ���������, ��, ��

� ∨ �� ∨ �� � �� ∨ �� ∨ � ≡ ���&�, �����, ��' � ���������, ��, ��
     ,      (4) 

 
� ∨ �� ∧ �� � � ≡ ���&�, �����, ��' � �

� ∧ �� ∨ �� � � ≡ ���&�, �����, ��' � �
     ,      (5) 

 
� ∨ � � � ≡ �����, �� � �
� ∧ � � � ≡ �����, ��� � �     ,     (6) 

 
where (3), (4), (5), and (6) present commutative laws, associative laws, absorption laws, and idempotent 
laws, respectively. 
 
From the expressions (2), it immediately follows that for each � ∈ ℕ 
 

1 ≤ � ↔ 1 � � ∧ 1 ≡ �����, 1� � 1
1 ≤ � ↔ � � � ∨ 1 ≡ �����, 1� � �

     ,       (7) 

 
which makes 1 the bottom of the lattice of divisibility ℒ. 
 
Let us assume that for each � ∈ ℕ the following definitions hold 
 

�����, 0� ≡ �
�����, 0� ≡ 0

     .       (8) 

 
Then these definitions readily imply 

                                                      
1 See for detail papers [4,5]. 
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� ≤ 0 ↔ � � � ∧ 0 ≡ �����, 0� � �
� ≤ 0 ↔ 0 � � ∨ 0 ≡ �����, 0� � 0

     ,     (9) 

 
which makes 0 the top of the lattice of divisibility ℒ. Thus, for every � in ℕ 
 

1 ≤ � ≤ 0     .    (10) 
 

3 Pseudo-complements 
 
Now, let us take into consideration coprime natural numbers � and �, i.e., ones whose greatest common 
divisor being 1, namely, �����, �� � 1.  
 
In the lattice-theoretic terms, the elements � and � identified with coprime natural numbers can be regarded 
as pseudo-complements of each other (analogous to pseudo-complements in a Heyting algebra, see, for 
example [6]). Indeed, for such elements one gets 
 

� ∧ � � 1 ↔  �����, �� � 1     ,      (11) 
 
while 
 

� ∨ � ≠ 0 ↔  �����, �� � ��     .      (12) 
 
Let us denote a pseudo-complement of the element �  as the unary operation ¬� , then � � ¬�  and 
equivalently, � � ¬� . This gives us the following involution law: Since the pseudo-complement is not 
unique, ¬¬� need not be equivalent to �. 
 
Along these lines, the lattice of divisibility ℒ � �ℕ � *1,2,3, … .,∧,∨, ¬,0,1� is an algebra with two binary 
operations (i.e., the meet ∧ and the join ∨), one unary operation (¬), and two nullary operations (1 and 0). 
 

4 Finite Sublattices of Divisibility 
 
Consider the partially ordered by divisibility set ℒ/ � ��, ¬�, ��: 
 

ℒ/ � ��, ¬�, ��  ≡   *1, �, ¬�, � � ¬�, �¬�, �0 � �¬�, ¬�0 � �¬�, �0¬� � �¬�0.  ,     (13) 
 
where �, ¬� ∈ ℕ and �0 and ¬�0 denote � ∙ � and ¬� ∙ ¬�, respectively.2 
 
Using Euclid's algorithm [8] one can find 
 

�����, �� � ����� − �, ��

�����, �� �
� ∙ �

�����, ��
     .     (14) 

 

So, it is readily can be proved that 

                                                      
2 Let us note that due to the definition of set equality (see, for example [7]), all the sets mentioned in this paper do not contain 
repetitions, e.g., neither � ≠ 1, ¬� ≠ 1 nor � ≠ ¬�. 
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� ∧ ¬� � 1
� ∧ �� � ¬�� � 1

� ∧ �¬� � �
� ∧ ��0 � �¬�� � �

� ∧ �¬�0 � �¬�� � 1
� ∧ ��0¬� � �¬�0� � �

� ∨ ¬� � �¬�
� ∨ �� � ¬�� � �0 � �¬�

� ∨ �¬� � �¬�
� ∨ ��0 � �¬�� � �0 � �¬�

� ∨ �¬�0 � �¬�� � �¬�0 � �0¬�
� ∨ ��0¬� � �¬�0� � �0¬� � �¬�0

     ,   (15) 

 
¬� ∧ �� � ¬�� � 1

¬� ∧ �¬� � ¬�
¬� ∧ ��0 � �¬�� � 1

¬� ∧ �¬�0 � �¬�� � ¬�
¬� ∧ ��0¬� � �¬�0� � ¬�

¬� ∨ �� � ¬�� � ¬�0 � �¬�
¬� ∨ �¬� � �¬�

¬� ∨ ��0 � �¬�� � �0¬� � �¬�0

¬� ∨ �¬�0 � �¬�� � ¬�0 � �¬�
¬� ∨ ��0¬� � �¬�0� � �0¬� � �¬�0

     ,   (16) 

 
�� � ¬�� ∧ �¬� � 1

�� � ¬�� ∧ ��0 � �¬�� � � � ¬�
�� � ¬�� ∧ �¬�0 � �¬�� � � � ¬�

�� � ¬�� ∧ ��0¬� � �¬�0� � � � ¬�

�� � ¬�� ∨ �¬� � �0¬� � �¬�0

�� � ¬�� ∨ ��0 � �¬�� � �0¬� � �¬�0

�� � ¬�� ∨ �¬�0 � �¬�� � �0¬� � �¬�0

�� � ¬�� ∨ ��0¬� � �¬�0� � �0¬� � �¬�0

   ,   (17) 

 
�¬� ∧ ��0 � �¬�� � �

�¬� ∧ �¬�0 � �¬�� � ¬�
�¬� ∧ ��0¬� � �¬�0� � �¬�

�¬� ∨ ��0 � �¬�� � �0¬� � �¬�0

�¬� ∨ �¬�0 � �¬�� � �0¬� � �¬�0

�¬� ∨ ��0¬� � �¬�0� � �0¬� � �¬�0

     ,   (18) 

 
��0 � �¬�� ∧ �¬�0 � �¬�� � � � ¬�

��0 � �¬�� ∧ ��0¬� � �¬�0� � � � ¬�

��0 � �¬�� ∨ �¬�0 � �¬�� � �0¬� � �¬�0

��0 � �¬�� ∨ ��0¬� � �¬�0� � �0¬� � �¬�0

     . (19) 
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Thus, every pair of the elements of ℒ/ has an upper bound and a lower bound within ℒ/, which means that 
the set ℒ/ is a finite sublattice of divisibility, specifically, 
 

∀�0, ¬�0:  ℒ/ � ��, ¬�, ��  ⊂  ℒ � �ℕ � *1,2,3, … .,∧,∨, ¬,1,0�     .      (20) 
 
Equally stated, the solutions to the Diophantine equation in positive coprime integers, that is, 
 

� � � � ¬�          (21) 
 
make the lattice of divisibility ℒ. 
 

5 Squared Lattices of Divisibility 
 
Let us take the lattice of divisibility ℒ0 � �ℕ0 � *10, 20, 30, … .,∧,∨, ¬,1,0� created by the squared natural 
numbers and consider the following set partially ordered by divisibility ℒ/4 � ��0, ¬�0, ��: 
 

ℒ/4 � ��0, ¬�0, ��  
≡   *10, �0, ¬�0, �0 � ¬�0, �0¬�0, �5 � �0¬�0, ¬�5 � �0¬�0, �5¬�0

� �0¬�5.   , 
     (22) 

 
where �0, ¬�0 ∈ ℕ0. 
 
Since 
 

�0 ∧ �0 ≡ �����0, �0� � 6�����, ��70 ≡ �� ∧ ��0

�0 ∨ �0 ≡ �����0, �0� � 6�����, ��70 ≡ �� ∨ ��0      ,     (23) 

 
it is not hard to demonstrate that all the relations (15) - (19) will hold if one formally replaces � and ¬� with 
�0 and ¬�0.  
 
What is more, by the Pythagorean theorem there is a sublattice of ℒ0 that is closed under the binary operation 
�0 � ¬�0, namely, 
 

∃�0, ¬�0:  ��0 � ¬�0� ∈ ℒ0    .       (24) 
 
This implies that set (22) can be a sublattice of divisibility 
 

∃�0, ¬�0:  ℒ/4 � ��0, ¬�0, ��  ⊂  ℒ0 � �ℕ0 � *10, 20, 30, … .,∧,∨, ¬,1,0�     ,      (25) 
 
or, in other words, the solutions to the squared Diophantine equation in coprime integers 
 

�0 � �0 � ¬�0          (26) 
 
can form the squared lattice of divisibility ℒ0. 
 

6 Cubed Lattices of Divisibility 
 
In similar manner, let us introduce the lattice ℒ9 � �ℕ9 � *19, 29, 39, … .,∧,∨, ¬,1,0� whose members are 
cubed natural numbers partially ordered by divisibility. Let us take into consideration the set ℒ/: �
��9, ¬�9, ��: 
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ℒ/: � ��9, ¬�9, ��
≡  *19, �9, ¬�9, �9 � ¬�9, �9¬�9, �; � �9¬�9, ¬�; � �9¬�9, �;¬�9

� �9¬�;.    , 
    (27) 

 
where �9, ¬�9 ∈ ℕ9. 
 
Again, given that 
 

�9 ∧ �9 � �� ∧ ��9

�9 ∨ �9 � �� ∨ ��9     ,     (28) 

 
it is easy to see that replacing � and ¬� with �9 and ¬�9 all the relations (15) - (19) would hold true. 
 
However, the peculiarity of this case is that according to Beal's conjecture, the cubed lattice of divisibility 
ℒ9 � �ℕ9 � *19, 29, 39, … .,∧,∨, ¬,1,0� cannot be closed under the binary operation �9 � ¬�9, explicitly, 
 

∄�9, ¬�9:  ��9 � ¬�9� ∈  ℒ9    .  (29)
 
This implies that the set ℒ/:  cannot be a sublattice of the cubed lattice of divisibility, that is, 
 

∄�9, ¬�9:  ℒ/: � ��9, ¬�9, ��  ⊂  ℒ9 � �ℕ9 � *19, 29, 39, … .,∧,∨, ¬,1,0�     .     (30) 
 
Thus, the solutions to the cubed Diophantine equation in coprime integers 
 

�9 � �9 � ¬�9         (31) 
 
cannot form the cubed lattice of divisibility ℒ9. 
 
Equivalently speaking, Beal's conjecture surmises that the lattice of divisibility induced by natural numbers 
raised to the third (or higher) power cannot be endowed with the binary operation �9 � ¬�9 on its elements. 
 

7 Algebra => as Applied to Logic of Divisibility 
 
The lattice ℒ9 � �ℕ9 � *19, 29, 39, … .,∧,∨, ¬,1,0� is an algebra that satisfies the following conditions: 
 

1) �ℕ9,∧,∨� is a lattice of divisibility; 
2) �9 ≤ �9 ↔ �9 � �� ∧ ��9, �9 � �� ∨ ��9; 
3) � ∧ 1 � 1, � ∨ 0 � 0; 
4) � ∧ ¬� � 1, � ∨ ¬� � �¬�. 

 

Let the map ℳ: @ → *B, C., where @ is an element of the lattice ℒ9, assign a truth value to a proposition D 
identified with @, specifically, 
 

D � ℳ�@�     ,      (32) 
 
such that ℳ�1� � B (i.e., false) and ℳ�0� � C (i.e., true). 
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8 Conclusion 
 
If the axioms of the propositional logic relating to divisibility are interpreted as terms of an algebra ℒ9 �
�ℕ9 � *19, 29, 39, … .,∧,∨, ¬,1,0�, then they will be evaluated to the divisibility lattice’s top, i.e., 0, under any 
assignment of values to the propositional formula's variables.  
 
In other words, if the propositional formula always has the value 0, then it is deducible from the laws of logic 
of divisibility, so valid in divisibility logical sense propositional formulas are exactly those that always have a 
value of 0. 
 
This is similar to the notion that formulas valid in classically logical sense are those that have a value of 1 in 
the two-element Boolean algebra under any possible assignment of true and false to the formula's variables 
[9]. 
 
In this fashion, the proposition 
 

E � ℳ��9 − �9 − ¬�9�            (33) 
 
will be true if �9 − �9 − ¬�9 � 0 for any �9 ∈ ℒ9  being the pseudo-complement of both � and ¬� , i.e., 
� ∧ � � � ∧ ¬� � 1. However, since it is easy to demonstrate that the lattice expression �9 − �9 − ¬�9 is 
not always 0 (unlike the expression � − � − ¬� which is a tautology in divisibility logical sense), it follows 
that the Beal's conjecture cannot be proved logically, that is, it cannot be derivable by reasoning from the 
laws of logic of divisibility. 
 
But the fact that the truth of the proposition (33) cannot be determined logically means that there does not 
exist a general constructive method of solving the cubed Diophantine equation (31) in coprime natural 
numbers. 
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