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Abstract

This paper discusses an almost periodic Lotka-Volterra cooperation system with time delays and
impulsive effects. By constructing a suitable Lyapunov functional, a sufficient condition which
guarantees the existence, uniqueness and uniformly asymptotically stable of almost periodic
solution of this system is obtained. A new result has been provided. A suitable example indicates
the feasibility of the criterion.
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1 Introduction

It is well known that the Lotka-Volterra competitive systems with time delays and impulses have
been studied extensively. Considerable work on the permanence, the extinction, the global asymptotic
stability, the existence of periodic solutions and almost periodic solutions of autonomous, non-
autonomous or nonlinear Lotka-Volterra competitive systems has been reported. See, for example,
[1]-[21] and the references cited therein. Meanwhile, the books by Gopalsamy [22] and Kuang
[23] are very good sources for dynamical behavior of Lotka-Volterra systems. For almost periodic
models in impulsive ecological systems, Stamov et al have discussed the existence of almost periodic
solutions [24]-[27]. In comparison with the Lotka-Volterra competitive system, fewer results of the
Lotka-Volterra cooperation systems were considered in the literature [28, 29]. In [29], Wei and Wang
have investigated the asymptotic behavior of the periodic solutions of the following Lotka-Volterra
cooperation system with finite delays:

x
′
i(t) = ri(t)xi(t)[1−

xi(t− τii)
ai(t) +

∑n
j=1,j 6=i bj(t)xj(t− τjj)

− ci(t)xi(t− τii)] (1.1)

In order to investigate the role of impulses in control of asymptotic behavior of this cooperation
system, Stamova has extended system (1.1) to an impulsive functional differential system as follows
[28]: {

x
′
i(t) = xi(t)[ri(t)− xi(t−τii(t))

ai(t)+
∑n
j=1,j 6=i bj(t)xj(t−τjj(t))

− ci(t)xi(t)], t 6= tk;

xi(t
+
k ) = xi(tk) + Iik(xi(tk)), t = tk, i = 1, 2, ..., n, k = 1, 2, ...

(1.2)

where xi(tk)(= xi(t
−
k )) and xi(t

+
k ) are, respectively, the population densities of species i before and

after impulse perturbation at the moment tk; and Iik are functions which characterize the magnitude
of the impulse effect on the species i at the moments tk. By means of piecewise continuous Lyapunov
functions and Razumikhin technique, sufficient conditions for uniform asymptotic stability of a
nonzero solution are obtained.

In this paper, by employing the piecewise continuous Lyapunov functional technique we shall
investigate the existence and uniqueness of positive almost periodic solutions for the following
impulsive Lotka-Volterra cooperation model:{

x
′
i(t) = xi(t)[ri(t)− di(t)xi(t−τii)

ai(t)+
∑n
j=1,j 6=i bj(t)xj(t−τjj)

− ci(t)xi(t− τii)], t 6= tk;

xi(t
+
k ) = xi(tk) + Iik(xi(tk)), t = tk, i = 1, 2, ..., n, k ∈ Z.

(1.3)

Let τ = max{τij}. We denote by x(t) = x(t, t0, ϕ) the solution of system (1.3), satisfying the initial
conditions

xi(s; t0, ϕ) = ϕi(s) ≥ 0, s ∈ [−τ, 0], xi(0
+; t0, ϕ) = ϕi(0) > 0, i = 1, 2, ..., n, (1.4)

where ϕ = [ϕ1, ϕ2, ..., ϕn]T .

2 Preliminaries

Definition 2.1 ([30]) The set of sequences {tlk} = {tk+l − tk}, k, l ∈ Z is said to be uniformly
almost periodic if for any ε > 0, there exists a relatively dense set in R, i.e., for any ε > 0, k ∈ Z,
there exists q ∈ Z such that |τk+q − τk| < ε.

By B = {tk|tk ∈ R, tk < tk+1, k ∈ Z, lim
k→±∞

τk = ±∞}, we denote the set of all sequences unbounded

and strictly increasing with distance ρ(t1k, t
2
k), the set PC(R,R) = {ϕ|R → R is continuously

differentiable everywhere except at the points tk, tk ∈ B at which ϕ(t−k ) and ϕ(t+k ) exist, and
ϕ(t−k ) = ϕ(t+k )}.
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Definition 2.2 ([30]) The function ϕ ∈ PC(R,R) is said to be almost periodic, if the following
conditions hold:

(C1) The set of sequences {tlk}, k, l ∈ Z is uniformly almost periodic;
(C2) For any ε > 0, there exists a real number δ > 0, such that if the points t1 and t2 belong to
same interval of continuity of ϕ(t) and satisfy the inequality |ϕ(t1)− ϕ(t2)| < ε if |t1 − t2| < δ.
(C3) For any ε > 0, there exists a relatively dense set M such that if r ∈M then |ϕ(t+r)−ϕ(t)| < ε
for all t ∈ R satisfying the condition |t − tk| > ε, k ∈ Z. The elements of M are called ε-almost
periods.

For system (1.3), we introduce the following conditions:

(H1) The functions ri(t), ai(t), bj(t), ci(t), di(t)(i, j = 1, 2, ..., n) are all bounded continuous positive
almost periodic functions in the sense of Bohr;
(H2) The set of sequence {tlk} = {tk+l − tk}, k, l ∈ Z is uniformly almost periodic and there exists
l > 0 such that inf

k∈Z
tlk = θ > 0.

(H3) Iik ∈ PC(R,R) and Iik is uniformly almost periodic satisfying |Iik(u)− Iik(v)| < L|u− v|.

For convenience, let φ+ = sup
t∈R

φ(t), φ− = inf
t∈R

φ(t) for a given bounded continuous function φ(t)

defined on R. According to the condition (H1), it will be assumed that r−i , a
−
i , b
−
j , c
−
i , d

−
i > 0

(i, j = 1, 2, ..., n). Corresponding to equation (1.3), first we consider the following almost periodic
differential equation with delays and impulses: x

′
(t) = x(t)f(t, x(t), xt), t 6= tk, k ∈ Z;

x(t+k ) = x(tk) + Ik(x(tk)), t = tk;
x(t) = ϕ(t), t ∈ [−τ, 0].

(2.1)

where xt = x(t+θ), θ ∈ [−τ, 0], f : R×Λ×Λ→ Rn,Λ = {x ∈ Rn : |x| ≤ υ, υ > 0}, ϕ(t) ∈ PC(R,R).
The product system of (2.1) is the follows:

x
′
(t) = x(t)f(t, x(t), xt), t 6= tk, k ∈ Z;

x(t+k ) = x(tk) + Ik(x(tk)), t = tk;
x(t) = ϕ(t), t ∈ [−τ, 0];

y
′
(t) = y(t)f(t, y(t), yt), t 6= tk, k ∈ Z;

y(t+k ) = y(tk) + Ik(y(tk)), t = tk;
y(t) = ψ(t), t ∈ [−τ, 0].

(2.2)

Define the Lyapunov functional V (t, x, y) and calculate the upper right derivative of V (t, x, y) along
solutions of system (2.2):

V ′(2.2)(t, x, y) = lim
h→0+

1

h
{V (t+ h, xt+h(t, ϕ), yt+h(t, ψ))− V (t, x, y)}. (2.3)

Using Lyapunov functional, we first have

Theorem 2.1 Suppose that the Lyapunov functional V (t, x, y) exists, and the following conditions
hold

(i) a(|x(t)− y(t)|) ≤ V (t, x(t), y(t)) ≤ b(|x(t)− y(t)|);
(ii) D+

(2.2)V (t, x, y) ≤ −cV (t, x, y), t 6= tk, and V (t+k , x(tk) + Ikx(tk), y(tk) + Iky(tk)) ≤ V (t, x(tk),

y(tk)), t = tk.

where c is a positive constant, a(v), b(v) are continuous and increasing functions, satisfying that
b(0) = 0. In addition, assume that there exists a bounded solution ξ(t) of system (2.1), such that
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| ξ(t) |≤ υ, then there exists a unique asymptotically stable almost periodic solution of system (2.1).

Proof: The proof is similar to Theorem 3.1 [24], we omit the details.

3 Main Results

Theorem 3.1 If conditions (H1)-(H3) hold. And furthermore assume that

(H4) For any i, k,−1 < Iik(xi(tk)) < 0 and xi(tk) + Iik(xi(tk)) > 0.

(H5) c−i +
d−i

a+i +
∑n
j=1,j 6=i b

+
j Mj

>

n∑
i=1,j 6=i

d+i b
+
j Mi

(a−i +

n∑
k=1,k 6=i

b−kmk)2
,

where Mi =
r+i exp(r+i τ)

c−i
,mi =

a−i r
−
i

d+i +a−i c
+
i

, (i = 1, 2, ..., n).

Then there exists a unique asymptotically stable almost periodic solution of system (1.3).

Proof: Firstly, we shall prove that there exists a bounded positive solution of system (1.3) and
(1.4). From the point of view of biology, in the sequel, we assume that x(t0) > 0, t0 ≥ 0. Then it
is easy to see that, for given x(t0) > 0, the systems (1.3) and (1.4) have a positive solution x(t)
passing through (t0, ϕ) for t ∈ R+. This is due to that

xi(t) = xi(t0) exp{
∫ t
t0

[ri(s)− di(s)xi(s−τii)
ai(s)+

∑n
j=1,j 6=i bj(s)xj(s−τjj)

− ci(s)xi(s− τii)]ds}
> 0, t 6= tk, i = 1, 2, ..., n.

(3.1)

On the one hand, from

x
′
i(t) ≤ ri(t)xi(t), t 6= tk, i = 1, 2, ..., n. (3.2)

Both sides integrating from t−τii to t of (3.2) we get xi(t) ≤ xi(t−τii) exp(r+i τii) or xi(t) exp(−r+i τii) ≤
xi(t− τii), t 6= tk, i = 1, 2, ..., n. So from system (1.3) we have

x
′
i(t) ≤ xi(t)[r+i − c

−
i exp(−r+i τii)xi(t)], t 6= tk, i = 1, 2, ..., n. (3.3)

Eq.(3.3) is a Bernoulli’s equation, it is easily to get

xi(t) ≤
xi(0)r+i

r+i exp(−r+i t) + xi(0)c−i exp(−r+i τii)(1− exp(−r+i t))
, t 6= tk, i = 1, 2, ..., n. (3.4)

Thus, we obtain

lim sup
t→∞

xi(t) ≤
r+i exp(r+i τii)

c−i
= Mi, t 6= tk, i = 1, 2, ..., n. (3.5)

On the other hand, let xi(t) = 1
ui(t)

, we have

u
′
i(t) = ui(t)[−ri(t) + di(t)

[ai(t)+
∑n
j=1,j 6=i

bj(t)

uj(t−τjj)
]ui(t−τii)

+ ci(t)
ui(t−τii)

], t 6= tk, i = 1, 2, ..., n. (3.6)

From (3.6) we get

u
′
i(t) ≤ ui(t)[−r−i +

d+i
a−i ui(t− τii)

+
c+i

ui(t− τii)
], t 6= tk, i = 1, 2, ..., n. (3.7)
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Noting that as t is sufficiently large, ui(t) ∼ ui(t− τii). Thus we have

lim inf
t→∞

ui(t) ≤
d+i + a−i c

+
i

a−i r
−
i

, t 6= tk, i = 1, 2, ..., n. (3.8)

or

lim inf
t→∞

xi(t) ≥
a−i r

−
i

d+i + a−i c
+
i

= mi, t 6= tk, i = 1, 2, ..., n. (3.9)

This indicates that there exists a bounded positive solution of system (1.3) and (1.4).
Noting that the product system of (1.3) is the following:

x
′
i(t) = xi(t)[ri(t)− di(t)xi(t−τii)

ai(t)+
∑n
j=1,j 6=i bj(t)xj(t−τjj)

− ci(t)xi(t− τii)], t 6= tk;

xi(t
+
k ) = xi(tk) + Iik(xi(tk)), t = tk, i = 1, 2, ..., n, k ∈ Z;

y
′
i(t) = yi(t)[ri(t)− di(t)yi(t−τii)

ai(t)+
∑n
j=1,j 6=i bj(t)yj(t−τjj)

− ci(t)yi(t− τii)], t 6= tk;

yi(t
+
k ) = yi(tk) + Iik(yi(tk)), t = tk, i = 1, 2, ..., n, k ∈ Z.

(3.10)

Corresponding to system (3.10), we construct a Lyaponov functional as follows:

V (t) =

n∑
i=1

| lnxi(t)− ln yi(t)| (3.11)

As t 6= tk, calculating the upper right derivative we get

D+
(3.10)V (t)

=

n∑
i=1

(
x
′
i(t)

xi(t)
− y

′
i(t)

yi(t)
)sign(xi(t)− yi(t))

=

n∑
i=1

{− di(t)xi(t− τii)
ai(t) +

∑n
j=1,j 6=i bj(t)xj(t− τij)

− ci(t)xi(t− τii)

+
di(t)yi(t− τii)

ai(t) +
∑n
j=1,j 6=i bj(t)yj(t− τij)

+ ci(t)yi(t− τii)}sign(xi(t− τii)− yi(t− τii))

=

n∑
i=1

{− di(t)xi(t− τii)
ai(t) +

∑n
j=1,j 6=i bj(t)xj(t− τij)

+
di(t)yi(t− τii)

ai(t) +
∑n
j=1,j 6=i bj(t)xj(t− τij)

− di(t)yi(t− τii)
ai(t) +

∑n
j=1,j 6=i bj(t)xj(t− τij)

− ci(t)xi(t− τii)

+
di(t)yi(t− τii)

ai(t) +
∑n
j=1,j 6=i bj(t)yj(t− τij)

+ ci(t)yi(t− τii)}sign(xi(t− τii)− yi(t− τii))

≤
n∑
i=1

{− di(t)

ai(t) +
∑n
j=1,j 6=i bj(t)xj(t− τij)

− ci(t)}|xi(t− τii)− yi(t− τii)|

+

n∑
i=1

n∑
j=1,j 6=i

di(t)bj(t)yi(t− τii)|xi(t− τii)− yi(t− τii)|

[ai(t) +

n∑
k=1,k 6=i

bk(t)xk(t− τij)][ai(t) +

n∑
k=1,k 6=i

bk(t)yk(t− τij)]

≤
n∑
i=1

{− d−i
a+i +

∑n
j=1,j 6=i b

+
j Mj

− c−i +

n∑
j=1,j 6=i

d+i b
+
j Mi

[a−i +

n∑
k=1,k 6=i

b−kmk]2
} sup
s∈[t−τ,t]

|xi(s)

−yi(s)|

(3.12)

Noting that | lnxi(t)− ln yi(t)| = 1
ηi(t)
|xi(t)− yi(t)|, where ηi(t) lies between xi(t) and yi(t). From

condition (H5), there exists c > 0 such that

D+
(3.10)V (t) ≤ −cV (t), t 6= tk. (3.13)
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When t = tk, From condition (H4), we have

V (t+k ) =

n∑
i=1

| lnxi(t+k )− ln yi(t
+
k )|

=

n∑
i=1

| ln[xi(tk) + Iik(xi(tk))]− ln[yi(tk) + Iik(yi(tk))]|

≤
n∑
i=1

| lnxi(tk)− ln yi(tk)| = V (tk) (3.14)

Hence based on Theorem 2.1, there exists a unique asymptotically stable almost periodic solution
of system (1.3) and (1.4).

An example: Now consider the following impulsive almost periodic Lotka-Volterra cooperation
system in the form

x
′
(t) = x(t)[12− sin

√
2t− (2+cos t)x(t−0.1)

7−sin t+(0.4−0.1 cos
√
3t)y(t−0.12)

− (8− cos
√

2t)x(t− 0.1)], t 6= tk,

y
′
(t) = y(t)[10− cos

√
2t− (2−sin t)y(t−0.2)

5+cos t+(0.3+0.1 cos
√
2t)x(t−0.1)

− (6 + cos
√

3t)y(t− 0.12)], t 6= tk,

x(t+k ) = x(tk)− 1
48

(x(tk) + 1
8
),

y(t+k ) = y(tk)− 1
60

(y(tk) + 1
10

).
(3.15)

where r+1 = 13, r−1 = 11, r+2 = 11, r−2 = 9; a+1 = 8, a+2 = 6, a−1 = 6, a−2 = 4; b+1 = 0.5, b−1 = 0.3, b+2 =
0.4, b−2 = 0.2; c+1 = 9, c−1 = 7, c+2 = 7, c−2 = 5; d+1 = d+2 = 3, d−1 = d−2 = 1, τ1 = 0.1, τ2 = 0.12.
Therefore, m1 = 0.667,m2 = 0.529,M1 = 6.814,M2 = 7.304. It is easy to see that the condition
(H4) is satisfied. Noting that

c−1 +
d−1

a+1 + b+2 M2

= 7 +
1

8 + 0.4× 7.304
= 7.092,

d+1 b
+
2 M1

(a−1 + b−2 m2)2
+

d+2 b
+
1 M2

(a−2 + b−1 m1)2
=

3× 0.4× 6.814

(6 + 0.2× 0.529)2
+

3× 0.5× 7.304

(4 + 0.3× 0.667)2
=

8.177

49.815
+

10.956

17.64
=

0.164 + 0.622 = 0.786 < 7.092.

c−2 +
d−2

a+2 + b+1 M1

= 5 +
1

6 + 0.5× 6.814
= 5.107,

d+2 b
+
1 M2

(a−2 + b−1 m1)2
=

3× 0.5× 7.304

(4 + 0.3× 0.667)2
=

10.956

17.724
= 0.618 < 5.107. Thus the condition (H5) is also

satisfied. Based on Theorem 3.1, there exists a unique asymptotically stable almost periodic solution
of system (3.15).

4 Conclusion

This paper investigates the existence and stability of almost periodic solutions for a class of impulsive
Lotka-Volterra cooperation models with delays. To the best of our knowledge, this result is new.
The example indicates that the restrictive conditions are suitable.
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