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Abstract 
Eight broiler weight groups, housed in metabolic chambers, were exposed to 3-5 ambient temperatures (AT) such 
that AT exposure fell below, near and above the projected thermoneutral (TN) zone. Birds were fed 0, 5, and 
10% of body weight (W), or allowed to consume food ad libitum, to vary energy consumption. Energy needs for 
body weight homeostasis, efficiency of metabolizable energy (ME) use for maintenance and the exponent 
needed to convert live body weight to metabolic weight was estimated. Energy (Kcal W-1 d-1) and oxygen (l W-1 
d-1) needs for body weight homeostasis declined curvilinearly as body weight increased from 0.042 kg to 2.44 
kg. Such needs were impacted by AT. The efficiency of ME use to support maintenance energy need varied in a 
cubic fashion with bird mass. The estimated zone of thermoneutrality, at body weight homeostasis, was inversely 
related to W (kg), expressed as: TN (ºC) = 31.896 – 0.4625·W (R2 = 0.99). Under metabolic basal rate (MBR) 
conditions, the TN zone was curvilinearly related to weight as: TNMBR = 32.6466 − (94.4603·W) − 
(0.7660·W2) (R2 = 0.99). The exponent, to linearize live body weight with heat production (HP) of birds fed to W 
homeostasis, was determined to be 0.758 with all birds strictly housed at TN. Further, the exponent to linearize 
HP of birds under MBR (fasted) conditions was estimated to be 0.679. Equations relating chick energy and 
oxygen consumption need with body weight and AT, metabolizable energy for gain homeostasis (MEmg), 
metabolizable energy for retained energy homeostasis (MEmr), metabolizable energy for protein homeostasis 
(MEmp), and metabolizable energy for fat homeostasis (MEmf) are presented.  

Keywords: broilers, ambient temperature, maintenance energy 

1. Introduction 
A quantitative understanding of broiler ME requirements, over an array of ambient temperatures (AT), is useful 
in the quest to optimize the broiler nutrition-environment interface. Indeed, it is well documented that both bird 
body size and AT impact broiler performance (Hurwitz et al., 1980; Koh & MacLeod, 1999). These conditions 
can make final bird partitioning of consumed ME into maintenance, activity, and tissue accretion components 
uncertain, even though such utilizations account for the bulk of absorbed energy use (MacLeod, 1997). Though 
considerable information is available concerning overall broiler ME need, generally less is known regarding the 
utilization dynamics of the aforementioned variables. 

Many studies have documented that the efficiency of ME use (for maintenance and growth) is influenced by a 
number of factors including bird age (Blaxter & Wainman, 1966; Luiting, 1990; Chwalibog, 1991), ambient 
temperature (AT) (Close, 1978; Luiting, 1990; Chwalibog, 1991), sex (Ferrell, 1979) and carcass composition 
(Emans, 1987; Luiting, 1990; Chwalibog, 1991). Whether such influences may be attributed to fluctuations in 
maintenance and/or accretion efficiency above maintenance is generally unknown. Studies have also examined 
the potential advantages of the net energy (NE) system over the ME system (MacLeod, 1997). Birds fed on the 
basis of NE had higher body weight and lower FCR, suggesting that the heat increment gap between ME and NE 
was not accounted for and was variable. De Groote (1974) noted similar observations. However, few if any 
investigations examine the dynamics of energy partitioning when AT, bird live weight and feed intake are 
simultaneously varied. 
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Basal metabolic rate (BMR) is defined as the rate of heat production by a mature, resting post-absorptive animal 
housed within a thermoneutral (TN) environment (Brody, 1945). Though the relationship between BMR and 
body weight is accepted as exponential, there is a disagreement between researchers as to the appropriate 
exponent that should be used to linearize live body weight-HP (heat production) relationship. Brody (1945) 
converted live weight to “metabolic weight” across species by raising live weight to 0.75 power, but further 
suggested that live weight to 0.67 power may be more appropriate for poultry. Both values have historically been 
used to quantify metabolic body size in poultry (Close, 1978; Hurwitz et al., 1980; Close & Stainer, 1984; 
MacLeod, 1990; Pinchasov, 1990). In this study, an exponent that can be used to convert body weight to 
metabolic body size was determined. 

The ME system is the main method of feed formulation practiced by poultry producers however, the ME system 
will not account for the energy that is used for body maintenance purposes. The classical definition of 
maintenance describes maintenance as the state “in which there is neither gain nor loss of nutrient by the body” 
(Blaxter, 1966). Therefore, the ME requirement for maintenance is the amount of energy required to balance 
anabolism and catabolism, giving energy retention around zero. However, the net energy system accounts for 
maintenance and provides an energy value that is closest to the “true” energy value of the feed since it predicts 
more accurately the performance of birds and also allows the possibility of implementing new approaches 
(Noblet, 2001). Traditionally, the factorial approach has been used to partition the ME energy requirements into 
maintenance and production. The coefficients determined can then be used to elaborate energy requirement 
models and establish better and more profitable feeding programs for poultry. These models consider the body 
weight, weight gain, protein, and fat accretion, and in some instances ambient temperature to partition energy 
requirements for poultry. However, an earlier study in our laboratory (Lema and Teeter, 1994) indicated that the 
factorial approach to estimating ME need for body weight homeostasis based on no body weight change may not 
be the right approach. At body weight homeostasis, they found that the birds have lost fat and gained protein 
without any indication of a change in body weight. 

Therefore, the study reported herein was designed to quantify broiler maintenance energy needs using two 
factorial approaches as well as an exponent to convert live weight to metabolic body size under an array of 
ambient temperatures and energy consumption levels. 

2. Materials and Methods 
Three groups of commercial Cobb-500 (Cobb-Vantress, Inc., Siloam Springs, Arkansas, USA) male chicks that 
hatched from the same age and strain parents were obtained from a commercial hatchery at regular intervals. 
Groups were reared to 0.045, 0.074, 0.112, 0.318, 0.647, 1.90, 2.003, and 2.4 kg live body weight to create 8 
weight groups that could be examined in 3 experimental periods (0.045 and 0.074 kg-period 1; 0.112, 0.318 and 
0.647 kg-period 2; 1.900, 2.003 and 2.400 kg-period 3). Varying the AT exposure and feed intake of each age 
group enabled the collection of BW and body composition data over 252 AT-weight-feed consumption 
combinations. Some, but not all data point combinations were replicated. If a bird weight-AT combination 
occurred within an experimental period, it was examined at the 4 feeding levels employed (0, 5, or 10% of the 10 
h fasted weights at experimental initiation; ad libitum consumption). 

To collect data representing the 252 AT-weight-feed consumption combinations, birds were first reared to the 
appropriate live weight in floor pens as specified by the primary breeder (Cobb-Vantress, 1998). Upon reaching 
the desired body weight, 36 chicks (12 per weight group) were selected at random from the original population 
and placed in individual open circuit respiratory chambers. Oxygen consumption and CO2 production were 
measured for each bird as the differential concentration between incoming and outgoing gas concentration 
multiplied by the airflow rate. Both metabolic chambers and the general operating procedures have been 
described elsewhere (Wiernusz & Teeter, 1993; Belay & Teeter, 1993). The 36 respiratory chambers, used in the 
study, were housed within 3 thermostatically controlled rooms (12 chambers/room) so that three different 
ambient temperatures (1/room) could be monitored simultaneously. Each room provided an AT exposure for 3 
weight groups of 4 chicks with each group consuming the 4 feeding levels. An attempt was made to select 
ambient temperatures for each weight group that fell near, below and above the chick’s anticipated TN zone as 
follows: 0.045 and 0.074 kg chicks were exposed to 28, 30 and 32 ºC; 0.112, 0.318, and 0.647 kg chicks were 
exposed to 24, 26, 28, 30, and 32 ºC; while the 1.90, 2.003 and 2.4 kg chicks were exposed to 18, 22, and 26 ºC. 

Chick handling during the 4-day chamber resident time occurred as follows: Day 1, chick adaptation to facilities 
with feed (Table 1) and water continuously available; Day 2, chicks were deprived of feed for the first 12 h, 
weighed between 10-11.5 h and received the first feeding at 12 h; Day 3 and day 4, chicks received 3 feed 
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allocations in 12 h intervals such that fasting occurred during the last 12 h. Birds had continuous access to water 
and maintained a 23 h light cycle throughout the experiment. 

Though bird gaseous exchange was monitored continuously over the 4-day period, the addition of day 2 feed 
(Table 1) to feeders was used to mark the study initiation. Upon completion of the 60-h feeding and 12 h fasting 
phases, birds were weighed and humanely sacrificed by cervical dislocation (AVMA, 1986). All excreta voided 
during the feeding and post feeding restriction phase was collected in trays located at the bottom of each 
chamber. Sacrificed birds and excreta were weighed, sealed in polyethylene bags and frozen (-20 ºC) until 
analysis. At analysis, feed and excreta samples were dried at 55 ºC to constant weight, ground to pass a 1 mm 
sieve and analyzed for DM and gross energy using a bomb calorimeter (Parr Moline, Illinois, USA) as well as 
carbon (C) and nitrogen (N) content via Leco-2000 (Lecco Corp., St. Joseph, Michigan, USA).  

 
Table 1. Composition of the experimental diet 

Ingredients % 

Corn, ground yellow 50.94 

Soybean meal (49% CP) 38.23 

Fat (animal and vegetable) 6.52 

Dicalcium phosphate 1.81 

Limestone 1.21 

Salt 0.45 

Vitamin mix1 0.25 

Methionine (99%) 0.22 

Trace mineral mix2 0.10 

Ethoxyquin 0.02 

Diet composition  

Energy (kcal kg-1) 3246 

Crude protein (%) 23 

Note. 1 Mix supplied the following per kilogram of diet: Vitamin A, 5.25 mg; cholecalciferol, 0.125 mg; vitamin 
E, 0.025 mg; vitamin B12, 0.03 mg; riboflavin, 15 mg; niacin, 75 mg; d-panthothenic acid, 25 mg; choline, 705.5 
mg; menadione, 5 mg; folic acid, 1.5 mg; pyridoxine, 6.25 mg; thiamine, 3.03 mg; d-biotin, 0.127 mg. 
2 Mix supplied the following per kilogram of diet: Manganese, 120 mg; zinc, 100 mg; copper, 10 mg; iodine, 2.5 
mg; calcium, 135 mg; iron, 75 mg; selenium, 0.15 mg.  

 

2.1 Statistical Analysis 
Data were analyzed by ordinary regression procedures. To ascertain the regression function used adequately fit 
the data, a lack of to fit test was performed. The regression model was considered inappropriate when P < 0.05. 
Gas consumption and production values were regressed against time, time2 and time3 so that time dependent 
polynomial equations could be developed to describe and quantify gas exchange like others (Wiernusz & Teeter, 
1993; Belay & Teeter, 1993). The resulting gas exchange estimates were then utilized to estimate HP according 
to Brouwer (1965). Oxygen and metabolizable energy consumed, as well as heat production, were each regressed 
on weight gain so that the magnitude of these variables could be estimated at body weight homeostasis (intercept 
value).  

Intercept values were subsequently subjected to a multiple regression model that included body weight (linear 
and quadratic), AT (linear and quadratic) and the interaction between the linear effects of body weight and AT. 
The resulting equations were used to construct 3-dimensional plots displaying the relationships. Subsequently, 
the regression equations were also solved to determine the AT associated with minimal HP, presumed to center 
within the TN zone. The resulting TN zones AT estimates were then regressed on body weight to describe the 
relationship. Finally, the log HP for birds fed to body weight homeostasis, while housed within the TN zone, was 
regressed on log body weight so that the exponent to convert live weight to metabolic body-size might be 
estimated according to Brody (1945). This last process was also repeated using the HP values of birds that fasted 
for 40-46 h (the classical fasting period for BMR) for MBR determination (Brody, 1945). Similarly, data of ME 
intake at various live weight and TN ambient temperature combinations were regressed on retained energy, fat 
and protein accreted. Intercept values were subjected to multiple regression models that included live weight, TN 
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Table 3. Metabolizable energy need for maintenance (MEm), protein retained (PR) and fat retained (FR) at body 
weight homeostasis of boilers during their grow out maintained below (C), above (H) and at Thermoneutral (TN) 
ambient temperature 

Period Environmental Zone MEm (Kcal/mwt/d) PR (g/d) FR (g/d) 

Starter 

C 174 1.12a 0.17c 

H 139 0.44bc 0.68a 

TN 139 0.84b 0.45b 

Grower 

C 148 5.39a 1.75b 

H 150 2.10c 2.84a 

TN 145 3.40b 1.67b 

Finisher 

C 118 6.73b 2.36b 

H 121 8.51a 15.91a 

TN 151 5.03c -3.81c 

 -------------------------------- Probability -------------------------------

Period 
Environmental Zone 
Period × Environmental Zone 

0.2877 0.0001 0.0930 

0.3706 0.0186 0.0080 

0.3954 0.0055 0.0004 

Note. abc Means within each period (row) with different superscript are different (P < 0.05).  

C = Below thermoneutral temperature, H = Above thermoneutral temperature, TN = Thermoneutral temperature.  

 

Deviation of ambient temperature from TN presumably necessitates nutrient oxidation to generate energy for 
enhancing heat dissipation or generation in returning bird body temperature to the TN state. Under heat stress 
(HS), food intake frequently declines (MacLeod et al., 1979; Wiernusz & Teeter, 1993) while under cold stress it 
increases (MacLeod et al., 1979). Overall HP of birds consuming feed ad libitum might therefore be expected to 
decline for HS and increase in cold environments. Such low AT conditions are presumably related to 
development of the pulmonary hypertension-ascites syndrome in broilers. Indeed, Beker et al. (1995) reported a 
strong relationship between O2 consumption and ascites incidence (R2 = 0.96). The equation presented in Table 2 
enables quantification of the AT impact on bird O2 consumption. 

Energetic efficiency of broilers has long been documented to be influenced by AT. However, the confounding of 
food intake and AT changes can make interpretation of strict energetic-environment relationships uncertain. A 
decrease in broiler maintenance energy as AT approaches TN suggests that birds housed outside TN are less 
efficient energetically for that reason. Assuming that the regression technique employed in this study estimates 
the TN zone midpoint, it becomes possible to examine divergent, yet equivalent, AT changes from TN (Table 4).  

 

Table 4. Live body weight gain (LBWG) of broilers at body weight homeostasis during their grow out 
maintained below (C), above (H) and at Thermoneutral (TN) ambient temperature 

Period Environmental Zone LBWG (g/d) 

Starter 

C -0.15 

H 0.07 

TN 0.13 

Grower 
C -0.04 
H 0.38 
TN -0.14 

Finisher 

C -0.43 

H -0.61 

TN 0.18 

 --------- Probability -------- 

Period 
Environmental Zone 
Period × Environmental Zone 

0.3980 

0.1763 

0.0670 

Note. C = Below thermoneutral temperature, H = Above thermoneutral temperature, TN = Thermoneutral 
temperature. 
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Table 5. Protein gain (PG) and fat gain (FG) at maintenance of boilers during their grow out maintained below 
(C), above (H) and at Thermoneutral (TN) ambient temperature 

Period Environmental Zone PG (Kcal/d) FG (Kcal/d) 

Starter 

C 0.93a -0.56b 

H 0.80b -0.48b 

TN 0.33c -0.20a 

Grower 

C 3.40a -2.05b 

H -0.01c 0.00a 

TN 1.88b -1.13b 

Finisher 

C 7.12a -4.30b 

H 3.74b -2.26a 

TN 3.87b -2.34b 

 ---------------------- Probability ---------------------- 

Period 

Environmental Zone 

Period × Environmental Zone 

0.0001 0.0001 

0.0075 0.0075 

0.0411 0.0411 

Note. abc Means within each period (row) with different superscript are different (P < 0.05). 

C = Below thermoneutral temperature, H = Above thermoneutral temperature, TN = Thermoneutral temperature.  

 

Since bird HP was determined under both the fasting condition and with ME consumption to support body 
weight homeostasis, it is possible to compute the efficiency of dietary ME use for maintenance (MEF). In this 
study, MEF was defined as the fasting HP/ME consumed at body weight homeostasis. Results (Table 6) 
indicated that MEF estimates varied in a cubic fashion (P < 0.05) with bird weight as efficiency rose from 75% 
for the 0.045 kg bird to a peak of 89% at 3 weeks followed by a subsequent decline to 25% for the 2.4 kg bird. It 
is important to keep in mind that these values are based upon body weight and not energy homeostasis and that 
all birds consumed a starter type (high protein) ration. Additional work is needed to investigate the impact of 
ration composition on MEF. Under TN conditions, the MEF decline in older birds in this study may be due to an 
inefficient calorie to protein ratio for that body weight. 

 
Table 6. Coefficients for estimation of energy (CE), protein (CP) and fat (CF) metabolizable energy need for 
maintenance1 of boilers during their grow out maintained below (C), above (H) and at Thermoneutral (TN) 
ambient temperature 

Period Environmental Zone CE CP CF 

Starter 

C 132a 65b 162a 

H 113b 55b 130b 

TN 97b 70a 109b 

Grower 

C 120a 61b 154a 

H 95b 95a 95b 

TN 97b 62b 113b 

Finisher 

C 139a 54a 181a 

H 107b 51a 135b 

TN 98b 27b 124b 

 -------------------------- Probability --------------------------

Period 

Environmental Zone 

Period × Environmental Zone 

0.5222 0.3715 0.2264 

0.0156 0.8931 0.0013 

0.9169 0.6243 0.7042 

Note. 1 Metabolizable energy need for maintenance = Coefficient/MWT.  
ab Means within each column with different superscript are different (P < 0.05). 

C = Below thermoneutral temperature, H = Above thermoneutral temperature, TN = Thermoneutral temperature. 
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