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ABSTRACT 
 

The concept of length functions on groups is first introduced by Lyndon.  This is used to give direct 
proofs of many other results in combinatorial group theory. Two important sets called M and N 
satisfying some certain axioms of length functions are considered.  Finally investigations of the 
nature and the structures of the sets M and N in relation to the elements of HNN group were 
carried out. 
 

 
Keywords: Archimedean elements; associated subgroups; conjugate elements; Coset 

representative; H. N. N extension; isomorphism; length functions; normal form; reduced 
word. 

 
1. INTRODUCTION 
 
In this paper we define a construction given by 
G. Higman, B. H. Neumann and H. Neumann in 
1949. This construction is called HNN extension. 
 
We define a length function on HNN extensions 
to get some further results concerning the 

structure of HNN extensions, factor groups and 
some predefined important parts of this group.   
However, we formulate a normal form theorem 
for HNN extensions and consider reduced forms 
of the elements of this group in order to 
investigate the structure of this extension in 
details. The background of Length Functions is 
based on the issues raised in, [1-6]. 
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2. LENGTH FUNCTIONS  
 
2.1 Definition: A length function |   | on a group 
G, is a function giving each element x of G a real 
number |�| , such that for all � , � , � ∈ � , the 
following axioms are satisfied.   
 
	1′     |�| = 0 , � is the identity elements of G .  
 
	2       |���| = |�| 
 
	4       ���, �� <  ���, �� ⟹ ���, �� = ���, ��,  
 

where ���, �� =  �
�  � |�| + |�| − |����| 

 
Lyndon in [1] showed that 	4  is equivalent to 
���, �� ≥ min� ���, ��, ���, ��� and to 
 
���, ��, ���, �� ≥  ⟹ ���, �� ≥   . 
 

	1′, 	2 and   	4  imply that:  |�| ≥ ���, �� =
���, �� ≥ 0.   
 
Assuming, A2 and A4 only, it is easy to show 
that:  
 

i.  ���, �� ≥ |�| 
ii.  |�|  ≥ |�| 

iii.   ���, �� ≤ |�| − �
� |�| , see [ 5 ]  

 
The axiom A3 states that:   ���, �� ≥ 0  is 
deducible from 	1′, 	2 .   Also, 	1′  is a weaker 
version of the following axiom:    	1:  |�| = 0 if 
and only if � = 1 in G. 
 
Lyndon [1] showed that if G is any group with 
length function and x, y and z are elements in G, 
then the following properties will hold. 

2.2 Proposition: ����, �� + ���, ���� = |�| 
 
2.3 Proposition: ���, ���� + ���, ���� ≤ |�| implies that |� � �| ≤ |�| − |�| + |�| 
 
2.4 Proposition: ���, ���� + ���, ���� ≤ |�| implies that ����, ���� = ���, ���� 
 
2.5 Proposition: ���, �� + �����, ���� ≥ |�| = |�| implies that  |�������| ≤ |����|� 
 
It follows from proposition 2.2 that for any �, � ∈ � , � ��, �� = |�| − � �� ���, ���� ≤  |�| by A3. 
 
Since ���, �� = � �� , ��,  we get:  � �� , �� ≤ min�|�| , |�|�. 
 
A5 states that:� �� , �� +  � ���� , ���� > |�| = � ⇒ � = � 
 
2.6 Definition: A non-trivial element g of a group G is called Non-Archimedean if  |&�| ≤  |&| 
 
2.7 Definition: Let G be a group with length function.   An element � ≠ 1 in G is called Archimedean if 
|�|  ≤  |��|. 
 
The following Axioms and results have added by Lyndon and others  
 

	0    � ≠ 1   ⟹  |�| < |��| 
 
(0  ��� , � � is always an integer 
 
(1   � ≠ 1  , |��|  ≤  |�| ) *+)�,  |�| is odd. 
 
(2   -./  0.  � ), |��| = |�| + 1  
 
(3   )2 |�| ), .�� 3ℎ�0 |��| ≥  |�|  
 
(1′  )2 |�| ), �5�0 60� |�| ≠ 0 , 3ℎ�0 |��| > |�|  
 
70  |��| ≤ |�| ) *+)�, �� = 1  ), � = ��� 
 
71∗ � ), &�0�/6+ 9� �� ∈ � ∶  |�| ≤ 1�  
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2.8 Definition: The set of all Non-Archimedean 
elements in G will be denoted by N, which is 
given by:  7 = �� ∈ � ∶  |��| ≤ |�|� 
 
Lyndon also introduced the following set in [1]: 
; = ��� ∈ � ∶ |��| +  |��| < 2|�| = 2 |�|� , and 
showed that ; ⊆ 7 . The nature of the                 
elements of M and N is investigated in the next 
section. 
 
3. HNN EXTENSION 
 
We now introduce an important group 
constructed by G. Higman, B.H. Neumann and 
H. Neumann.  The details of this construction are 
given in, [7], [8] and [9]. 
 
3.1 Definition: Let G be a group, I be an index 
set and �	=: ) ∈ >� , �?=: ) ∈ >�  be families of 
subgroups of G with a family  �∅=: ) ∈ >� of maps 
such that, each ∅= : 	=  →  ?=  is an isomorphism.  
Then the H.N.N extension with base �= and 
stable letters  3=  , ) ∈ >  and associated 
subgroups  	= and ?=, ) ∈ > is the group  
 
�∗ = < � , 3= ; /�+ � ,  3=

��6=3= = ∅=�6=� ,  6= ∈ 	= > , 
where 〈� , /�+ �〉 is a presentation of G. 
 
To formulate a normal from theorem for H.N.N 
extensions, we shall consider the following: 
 
Any element of �∗  is equal to a product  
&E 3=F

GF&� …  3=I
GI&J , 0 ≥ 0, K= =  ±1 

 
Note:  Throughout this section &= will denote an 
element of G. 
 
3.2 Definition: A sequence &E 3=F

GF&� …  3=I
GI&J , 0 ≥ 0,

K= =  ±1  is said to be reduced if there is no 
consecutive subsequence 3=

��&= 3=  with &=  ∈  	=  ,
./ 3=&=3=

�� with &=  ∈  ?=  if w is a word in � ∪ �3=� ∪
�3=

��� .  Then we can get 3= −  /��NO3).0 of w 
corresponding to the relations of �∗ as follows: 
 

1) Replace a sub word of the from 3=
��&= 3=  , 

by ∅=�&=� whenever &=  ∈  	= 
2) Replace a sub word of the from 3= &= 3= , by 

∅=�&=� whenever &=  ∈  ?=  
 
By carrying out all possible 3= −  /��NO3).0  we 
get a reduced word defining the same element of 
�∗. 
 
The products of the elements in two distinct 
reduced sequences may be equal in �∗. To get 

normal forms, once again we consider the coset 
representatives as follows: 
 
Choose for each i a set of representatives of the 
right cosets of 	=  )0 �  and a set of 
representatives of the right cosets of ?=  )0 �.  We 
shall assume that 1 is the representative of both 
cosets 	=  and ?= . 
 
3.3 Definition: Given the sets of right coset 
representatives of 	= and ?= in G, then a normal 
form in �∗  is a sequence of the form 
&E 3=F

GF&� …  3=I
GI&J  , 0 ≥ 0 KP =  ±1, where  

 
i) &E is an arbitrary element of G, except that 

&E ≠ 1 if n=0 
ii) )2 KP = −1 then &P is a representative of a 

coset of 	=Q  )0 � 
iii) )2 KP = +1 then &P is a representative of a 

coset of ?=Q  )0 � and  
iv) There is no subsequence 3G  1 3�G  where 

K = ±1. 
 
Because of the relations 3=

��6=3= =  ∅=�6=�  of �∗ , 
we can replace 3=

��6=  by ∅=�6=�3=
��  without 

changing the corresponding element of G.  
Similarly we can replace 3=9=  by ∅ =

���9=�3=
��, by 

working from right to left. We can show that 
every element of �∗  is equal to a product 
&E 3=F

GF   …  3=I
GI&J where &E 3=F

GF   …  3=I
GI&J  is a 

normal form. 
 

3.4 Theorem (Normal Form Theorem):   Let 
�∗ = < �, 3= ; /�+ � , 3=

��6=3= = ∅=�6=� ,  6=  ∈  	=  ,
) ∈  > >  be an H.N.N. extension.  Then every 
element of �∗ has a unique representation as a 
product   &E 3=F

GF   …  3=I
GI&J  , where 

&E 3=F
GF   …  3=I

GI&J   is in a normal form. 
 
Proof:  See [8] 
 
3.5 Theorem (Higman, Neumann, Neumann): 
Let �∗ = < �, 3= ; /�+ � , 3=

��6=3= = ∅=�6=� , 6=  ∈
 	=  , ) ∈  > > be H.N.N. extension, then the group 
G is embedded in �∗ by the map& → & . 
 
3.6 Theorem  (Britton’s Lemma): If 
&E 3=F

GF   …  3=I
GI&J  = 1  in �∗  where ≥ 1 , then 

&E 3=F
GF   …  3=I

GI&J   is not reduced. 
 
Theorems 3.5 and 3.6 are equivalent to theorem 
2.4 (proofs are given in [1] and [9]). 
 
3.7 Lemma:  Let �∗ = < �, 3= ; /�+ � , 3=

��6=3= =
∅=�6=� ,  6=  ∈  	= , ) ∈  > >  be H.N.N. extension 



 
 
 
 

Nesayef; JSRR, 14(4): 1-8, 2017; Article no.JSRR.33282 
 
 

 
4 
 

and N = &E  3=F
GF   …  3=I

GI &J  ,  5 = ℎE  3=F
RF   …  3=S

GS ℎT 
be reduced words such that u = v in �∗.  Then 
 = 0 and K= = U=  , 2./  ) = 1, … , 0. 
 
Proof:  Since u = v in �∗ , then  
1 = &E 3=F

GF   …  3=I
GI&JℎT

��3�RS … 3�RFℎE
��. 

 
Since u and v are reduced, the only                              
way the indicated sequence can fail to be 
reduced is that when  KJ =  UT and &JℎT

��  is in 
the appropriate sub-group 	=  or ?= .                 
Successive t-reductions will result in, each 
K= =  U=  and m = n. 
 
The normal form theorem 3.4 for H.N.N. 
extension allows us to assign a well-defined 
length to each element of these             
extensions. 

3.8 Definition: Let �∗ = < �, 3= ; /�+ � , 3=
��6=3= =

∅=�6=� , 6=  ∈  	=  , ) ∈  > >  be an H.N.N. 
extension.   Define the length of an element 
g )0 �∗ by: 
 
|&| = 0 , )2 & = &E  3=F

GF   …  3=I
GI &J , 0 ≥ 0, is in a 

reduced form, where K� = ±1. 
 
The following Theorems generalize some results 
in [10] and [11]. 
 
3.9 Theorem:  Let �∗ = < �, 3= ; /�+ � , 3=

��6=3= =
∅=�6=� , 6=  ∈  	=  , ) ∈  > >  be H.N.N. extension 
and   |&| = 0 , )2 & = &E  3=F

GF   …  3=I
GI &J , 0 ≥ 0,  be 

in a reduced form, where K� = ±1.  Then | | is a 
length function on �∗. 

 
Proof 
 
	1′    |1| = 0 
 
	2  |&| = |&��|,   & ∈ �∗ is obvious as &�� will be reduced if g is reduced. 
 
Let   &,   ℎ, V ∈ �∗ 
 
Suppose � �& , ℎ� , � �ℎ , 3 � ≥ , 
 
Let & = ��3�

WF��
��  … . �J3J

WI�J
�� ,   |&| = 0 ≥ 1  and ℎ = ��3�

WF��
��  … . �T3T

WS�T
�� , |ℎ| =  ≥ 1  be in 

reduced forms 
 
&ℎ�� = ��3�

WF��
�� … �J3J

WI�J
��3���T

�� … ��3�
WF��

�� 
 
�J

���T = 1 ∈ �. Then 3T
�� 1 3T

�� = 1 ∈ �. 
 
Suppose &ℎ�� = ��3�

WF��
�� … �J�X6X�T�X

  ��   … . ��
�� 

 
Let V = ��3�

WF��
�� … �J3J

WI�J
�� and  &V�� = &ℎ�� ℎ&V�� 

 
ℎV�� = ��3�

WF��
�� … �J�X9X �Y�X

�� 3T�
WSZF  �Y�X … ��

��  
 
Therefore &ℎ�� = ��3�

WF��
�� … �J�X6X�T�X

  ��   … . ��
��VY

��3Y
W[VY … ��

�� 
 
As ��&, ℎ� and �ℎ, V� ≥ ,.  Then  
 
&ℎ�� = ��3�

WF��
�� … 6X\�9X\��Y�X3J��

WIZF  �Y�X … ��
�� 

 
]ℎ�/�2./� |&ℎ��| ≤ 0 + N − 2,, i e ��&, V� ≥ , 
 
^. | | is a length function. 
 
It is proved in [ 6 ], that d(g,h ) is always an integer,  i.e C0 is satisfied in H.N.N extensions. 
 
3.10 Theorem: Let �∗ = < �, 3= ;  /�+ � ,  3=

��6=3= = ∅=�6=� , 6=  ∈  	=  , ) ∈  > > be  H.N.N extension.  
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Then the elements of N are the conjugates of the elements of the base G. 
 
Proof: To show that if  & ∈ 7 , then & = � 6 ��� , � ∈  �∗ and 6 ∈ �. 
 
Suppose that & ∈ 7 and & = ��3�

W�� … �J��3J
WI�J is reduced. i e | & | = 0 

 
The result is trivial if n = 0 or 1. 
 
Now if | &� | ≤  |&|, then  
 

&� = ��3�
WF�� … �J��3J

WI�J��3�
WF�� … �J��3J

WI�J,  
 
Where, |�X6X�X\�| ≤ 2, if there is no further cancellations. 
 

& = _��3�
WF�� … �J��3J

WI�J`_��3�
W�� … �X��3X

Wa�X`bccccccccccccccdcccccccccccccce _��3�
WF�� … �X��3X

Wa�X `��
,  

 
Where, 
 

6X= _��3�
WF�� … �J��3J

W�J`_��3�
W�� … �X��3X

Wa�X` 
 
Therefore 
 

 & =  _��3�
W�� … �X��3X

Wa�X` 6X _��3�
WF�� … �X��3X

Wa�X `��
 

 
Therefore &  is a conjugate of an element 6X of G. 
 

Conversely suppose & = _��3�
WF�� … �X��3X

Wa�X` 6X _��3�
WF�� … �X��3X

Wa�X `��
 

 
If �X6X�X

��  ∈ � then put �X6X�X
�� = 6X\�.  This means that 6X   ∈ � 

 
If |6X\�| = 0, then |6X\�

� | =  0,  so  6X\�  ∈ �. If |6X\�| = 1 then 6X\�
� = �X6X�X

�� where 6X 
�  ∈ � 

Suppose �X6X�X
�� is reduced, I e |6X\�

� | =  2 
 
Therefore  6X  ∈ �, which is a contradiction.  So �X6X�X

�� is reduced, ie  f6X\�f = f6X f 
 
]ℎ�/�2./�, 6X\�  ∈ � 
 
Further, if �X��6X\��X��

��  is not reduced, then  
 

& = _��3�
WF�� … �P��3P��

WQZF�P`9P_��3�
WF�� … �P��3P��

WQZF�P`��
,  

 
Where 9 ∈ � and �P 9P�P

�� is reduced  
 

If  9 ∈ � , then |&| = 2 /  , 9� ∈ � and |&�| = g_��3�
WF�� … �X`_��3�

WF�� … �X`��g  ≤ 2/ 

 
So & ∈ 7, 9 ∉ � , �P9 and 9�P

�� are reduced resulting in  |&| = 2/ + 1 
 

Since |9�|  ≤ 1, then |&�| = g_��3�
WF�� … �X`9X

�_��3�
WF�� … �X`��g ≤ 2/ + 1 = |&| 

 
Therefore, & ∈ 7 
In case if 9 ∉ � and either �P9P�P

�� is not reduced, then |&| = 2/ 
 
Since ∈ 7 , then |9�| ≤  |9|.   So,  9� is not reduced. 
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Consider &� = _��3�
WF�� … �X`9X

�_��3�
WF�� … �X`��

and suppose �P9��P
�� is reduced, then: 

 
Either 9P�P

�� is not reduced or �P9 is not reduced. 
 
Therefore �P9��P

�� is not reduced ie |�P9��P
��| ≤ 2 

 
Therefore |&�| = 2/ = |&|,   ) � & ∈ 7. 
 
3.11 Theorem: Let �∗ = < �, 3= ; /�+ � , 3=

��6=3= = ∅=�6=� ,  6=  ∈  	=  , ) ∈  > > be H.N.N. extension. Then 
the elements of N are equivalent if and only if they are conjugates by the same elements of �∗. (if  
&~ℎ in N then |&ℎ��| ≤  |&| = |ℎ| ) 
 
Proof  Let & = �E3�

WF�� … �J��3J
WI�J and ℎ = �E3�

WF�� … �J��3J
WI�J  be both reduced  

 
1) The result is trivial if |&| = |ℎ| = 0,1 
2) If n > 1 

 
where W= = ∓1. 
 

By theorem 3.10,  & = _�E3�
WF ∈� … �J�X3J

WI�X`6X_�E3�
WF … �X`��

, where 6X ∈ � and  
 

ℎ = _�E3�
WF�� … �X`9X_�E3�

WF … �X` ,  9X ∈ � 
 

&ℎ�� = _�E3�
WF�� … �X��`_3X��6X` _�E3�

WF … �X`��_�E3�
WF�� … �X`�9X

���X
��� _�E3�

WF�� … �X��`��
  

 

Since |&ℎ��| ≤ 0,  then _�E3�
WF�� … �X`��_��3�

WF  … �X` = �, then 
 

�E3�
WF�� … �X = ��E3�

W�� … �X�6X 
 

Thus ℎ = _�E3�
WF�� … �X ` 6X9X6X

��_�E3�
WF�� … �X`��

 where 6X9X6X
�� = 6 ∈ � 

 
Hence g, h are conjugate of 6 ∈ �. 
 

Conversely suppose that   & = _�E3�
WF�� … �P ` 6X_�E3�

WF�� … �X`��
, where 6P ∈ � and 

 

 ℎ = _�E3�
WF�� … �P ` 9P_�E3�

WF  … �P`�� , 9P ∈ � where 6~9 
 
Similar argument show that �P6P�P

�� is not reduced. 
 
Since  6~9 , then either 6P , 9P  ∈ � then  6P9P

�� ∈ � and  
 

|&ℎ��| = g_�E3�
WF�� … �P`_�E3�

WF�� … �P`��g  ≤ 2/.  So &~ℎ. 

 
3.12 Theorem: Let �∗ = < �, 3= ; /�+ � ,  3=

��6=3= = ∅=�6=� , 6=  ∈  	=  , ) ∈  > > be H.N.N. extension.  
 
Then the elements of M are the conjugates of the elements of the associated subgroups. 
 
Proof:  To prove that & , ℎ ∈ ; → &ℎ = �6���,  where � ∈ �. 
 

Let & = �E3�
WF�� … �J , ℎ = �E3� �� … �J be reduced and suppose 

 
f&ℎ f + |ℎ&| < 2|ℎ| = |&|, Then |&|, |ℎ| ≥ 1. 
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0 = 1 ), trivial. 
 
Suppose f ���� f = 0 , then &ℎ = ��������

��= conjugate of ������ 
 
Similarly if f ���� f = 0 , then hg is conjugate of   ���� 
 
So let 0 ≥ 2 and let  
 

&ℎ = _�E3�
WF�� … �X`6X��X\� … �J� ,                                                                                                               �1� 

 
So , ≤ 0 and s is maximum. 
 
Then (1) is reduced in which case, f&ℎ f = 20 − 2, + 1 or ^X  ∈ � and �J�X6X�X\� is reduced, in which 
case f&ℎ f = 20 − 2, , where 6X = �J�X\� … 3J

WF�J ��3�
WF�� … �X 

 
Similarly 
 

 ℎ& =  �E3�
WF�� … �J�P9P�P\�3P\�

WQkl … �J                                                                                                           �2� 
 
Then either (2) is reduced so fℎ& f = 20 − 2/ + 1 or 9P ∈ � and �J�P9P�P\� is not reduced so  
 
fℎ& f = 20 − 2/, Where 9P =  �T�P\�3T�P\�

Wm …  �� ��3�
W�� … � P, Then 20 − 2, + 1 + 20 − 2/ + 1 < 20 

 
20 − 2/ − 2, + 2 < 0 

 
/ + , > 0 + 1, Therefore,  / > 0 − , + 1 and , > 0 − / + 1 
 
Then 9J�X\�  ∈ �.  Since 6X��  ∈ � , then 9J�X\�6X��  ∈ � or gh is a conjugate of an element in G. 
 
4. CONCLUSION 
 
The conclusion is that in any HNN group, the 
elements of N are conjugates of the base group 
G and they are conjugate of each other by the 
same elements. However the elements of M are 
the conjugates of the associated groups.  
Moreover, the set M is a subset of N. 
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