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Abstract

The first interstellar object to be observed in our solar system, 1I/2017 U1 ’Oumuamua, combines the lack of
observable cometary activity with an extra-gravitational acceleration. This has given rise to several mutually
exclusive explanations based on different assumptions in the material composition of ’Oumuamua. We show how a
combination of observations in the infrared and optical spectra may serve to distinguish between these explanations
once another object with ’Omuamua-like properties comes close enough to Earth. This possibility is linked to the
widely different thermal properties of the different material models that have been proposed. Developing a model
for the thermal conduction and infrared signal from a fractal model, we compare predictions of the infrared signal
with that from standard thermal models that assume ’Oumuamua to be either a solid piece of rock/ice or a thin
sheet.

Unified Astronomy Thesaurus concepts: Small Solar System bodies (1469)

1. Introduction

Since the first known interstellar object 1I/2017 U1
(’Oumuamua) was discovered in 2017 October, much effort
has gone into explaining its formation and unusual behavior
(Ćuk 2018; Raymond et al. 2018; Bannister et al. 2019; Luu
et al. 2020). This behavior is characterized by lack of cometary
activity (Jewitt et al. 2017; Meech et al. 2017), a highly
elongated shape (Luu et al. 2019), and a size that is unexpected
from estimated distributions of small bodies in the solar system
or a protoplanetary disk (Jewitt et al. 2017; Moro-
Martín 2018, 2019)—as well as nongravitational acceleration
(Micheli et al. 2018). We recently suggested that ’Oumuamua
originated as a cosmic “dust-bunny,” a cometary fractal
aggregate (CFA) that was formed in a cometary tail (Flekkøy
et al. 2019; Luu et al. 2020). Others (Ćuk 2018; Fitzsimmons
et al. 2018) have proposed that it is a potentially volatile
substance covered by a rocky crust that was formed by tidal
disruption and heating during a close encounter with a nearby
star (Ćuk 2018). Another suggestion is that it is a chunk of
frozen N2 ejected from an exo-Pluto-like surface (Desch &
Jackson 2021; Jackson & Desch 2021), or a piece of pure H2

ice (Seligman & Laughlin 2020). Finally, the possibility that it
is a light sail developed by an alien civilization has been
advocated (Bialy & Loeb 2018). Since ’Omuamua itself is no
longer observable, deciding between these models must await
the next passage of a similar object. Here we show that the
combination of optical and infrared observations offers such a
distinction possibility if the passage of the next object is as
close to earth as was ’Oumuamua.

We shall refer to these models as the CFA-, ice- rock- and
light-sail model. In the case of the CFA and light-sail models,
radiation pressure from the Sun may account for nongravita-
tional acceleration. However, an object of solid ice or rock is
too massive to be affected by radiation pressure, and the
nongravitational acceleration is explained by undetectable
outgassing. The same explanation has been applied in the case

where the sublimating substance is covered by a rocky crust
(Zhang & Lin 2020).
Infrared observations of ’Oumuamua were limited to those

of the Spitzer telescope, which had run out of cooling helium
(Trilling et al. 2018). The new James Webb Space Telescope,
to be located at the second Lagrange point, will offer increased
resolution in the infrared spectrum. Provided the size and
closest distance to Earth is comparable to that of ’Oumuamua,
the combination of optical and infrared observations of another
such object would then be sufficient to distinguish between the
models. It would require that the optical observations constrain
the shape and rotational state of the object, as was the case with
’Oumuamua (Jewitt et al. 2017; Jewitt & Luu 2019; Luu et al.
2019; Mashchenko 2019), even though it had passed its closest
encounter with Earth by the time it was first observed on UT
2017 October 18.5 (Williams 2017).
In this case the infrared signature would be qualitatively

different for the different models since these have different
thermal properties: during observation of the night side, a rock
surface will gradually cool. A CFA, by contrast, is partially
transparent to the infrared radiation owing to its high thermal
conductivity, and will gradually heat on the night side. A
surface made of N2 ice will stay too cold for detection at all,
and, finally, a light sail is so thin that it has the same infrared
signature on both sides.

2. Thermal Models

As a test case of these distinction possibilities, we take the
rotational state and observation geometry to be as simple as
possible, and use the known values of Earth distance, size, and
shape estimates of ’Oumuamua.
In all models, the shape is taken to be enveloped by an

ellipsoid with semimajor axis a= 119 m, b= 111 m, and
c= 19 m (see Mashchenko 2019) exposing the widest surface
area toward the incoming light during its rotation. The angular
velocity ω= 2π/7h is that of ’Oumuamua and points in the
direction normal to the plane of Figure 1.
In the ice model, the absorbed radiation energy from the Sun

is consumed by sublimation at a constant sublimation
temperature, while in the other models, it is transported as
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heat below the surface. In the CFA model, the dominant mode
of this transport is by photons, while in the light-sail and rock
models, it is by phonons.

The formation scenario of the rock model is suggested to
involve extensive tidal fragmentation of a volatile rich parent
body during a close H2O ice encounter with its host stars
followed by ejection (Zhang & Lin 2020). The heating during
this process would have created a solid crust of unknown
permeability surrounding a more volatile interior. In calculating
the surface temperature, we shall neglect the effect of these
volatiles sublimating and only consider the diffusive heat
transport into a regolith surface.

Porous materials found in the regoliths of asteroids and
comets have much smaller values of the thermal conductivity
and diffusivity than normal rocks, a typical value being
κt= 10−2 W/(m K) and Dt= 10−8 m2 s−1 (see Cooper et al.
2003 and Jewitt et al. 2017), and even smaller values are
assumed by some authors (Zhang & Lin 2020). For this reason,
the thermal diffusion length in the rock model is ∼cm, which is
much smaller than the thickness 2c.

The surface temperature of the rock model is obtained by
thermal modeling (Fitzsimmons et al. 2018) based on the heat
diffusion equation
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where p∼ 0.1 is the albedo and jsun= 1360Wm−2 the solar
influx at a distance R= 1 au, L is the thickness in the z-
direction normal to the surface, and κt is the thermal
conductivity. Compared to the standard thermal model
(NEATM Harris 1998) this description does not include the
beaming effect (beaming factor η= 1), but does include the

effect of finite thermal inertia. The thermal diffusivity
Dt= κt/cv, where cv is the heat capacity per unit volume.
The first of the above equations describes the day side and

the last the night side. When q <cos 0, boundary conditions
for z= 0 and z= L are interchanged, reflecting the fact that the
day and night sides are interchanged. The above equations are
integrated using a simple finite-difference scheme and θ= ωt.
For the frozen N2, the temperature is simply taken to be the

sublimation temperature at zero pressure, T≈ 63 K. In the
light-sail model, the internal diffusive transport of heat may be
neglected and the temperature assumed to be the same on both
sides as such a sail would have to be much thinner than any
reasonable diffusion length. The temperature is then obtained
from the energy balance

( )q s=j Tcos 2 3sun
4

where the factor 2 comes from the fact that the sail would
radiate equally on both sides.

2.1. Thermal Conduction in a Fractal

While the temperature evolution in the ice-sail and rock
model is described by well established thermal models, the
corresponding transport equations of heat in a fractal structure
are less well established. Diffusion on fractals has been studied
extensively (O’Shaughnessy & Procaccia 1985; Havlin & Ben-
Avraham 2002; Olsen et al. 2019). In our case, however, the
transport is not restricted to the fractal itself, but rather it occurs
by radiation in the open space between the solid sites on the
fractal.
In Appendix A.2 we show that the mean free path of a

photon originating from an arbitrary location inside the fractal
structure is ( )( )l p= -r a r4 3 D

0 0
3 where D= 2.35 (Flekkøy

et al. 2019) is the fractal dimension and r0 the radius of the
particles that make up the fractal. A photon originating from
such a solid particle, by contrast, has a mean free path ∼r0, that
is much smaller than l. For this reason, we may take the
radiation field and solid structure to be in local equilibrium. In
other words, they will have the same temperature in the vicinity
of the solid structure.
On average, the radiation field then has a constant

temperature in every plane normal to the surface and there
will be a temperature gradient in the direction n. The radiation
across a given plane normal to n will be re-absorbed over a
distancel, so that the net energy flux jt passing from z to l+z
is

( ( ) ( )) ( )s l= - +j T z T z , 4t
4 4

where σ= 5.67 10−8 W/(m2K4) is the Stefan–Boltzmann
constant. Taylor expansion of the above expression yields
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if the values r0= 1μ m and T= 250 K are used (Flekkøy et al.
2019). This value is in the range of the thermal conductivity
κ0∼ 1 W/(K m) for silicate rocks.
By contrast, the thermal conductivity κs of the solid structure

that makes up the fractal depends on the solid fraction

Figure 1. Top view of the observational geometry showing an oblate ellipsoid
facing the Sun and Earth with its broadside during its rotation. The phase angle
is 90′ and θ the angle of incident light to the surface normal n. The in-plane
rotation is given by the angular velocity ω.
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( )f = ~- -r a 10s
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3 5(Flekkøy et al. 2019) through the

relation κs= fsκ0∼ 10−5 W/(Km). This means that the
thermal conduction of the radiation field is ∼5 orders of
magnitude larger than that of the solid.

The heat capacity per unit volume of the radiation field is
given as cv= ∂ò/∂T where the energy density ò= σT4/c0, and
c0 is the speed of light. It may be written
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where j= σT4. This value is 8–9 orders of magnitude smaller
than the average heat capacity of the solid, which is given as

( ) ( )f= »c c 5 J m K 8vs v s0
3

where cv0∼ 106 J/(m3K) is the typical heat capacity of rocks.
So, while the radiation field governs the heat conductivity, the
solid phase governs the heat capacity, as was also found by
Merril (Merril 1969) who studied heat transfer in evacuated
powders. As a result, the thermal diffusivity
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c
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The corresponding thermal diffusion length in the CFA over a
time t= 3.5 h (the half-period of ’Oumuamua) = »x D t2t t

60 m, which is significantly larger than the estimated thickness
2c= 38 m (Mashchenko 2019).

This implies a transparency to infrared radiation, which will
vary with location. Since any fractal structure has inhomo-
geneities on all length scales, geometric fluctuations will cause
temperature variations on all scales as well. For the purpose of
quantifying the effects of these fluctuations, we construct a
fractal of the prescribed dimension D= 2.35. It is constructed
by a hierarchical procedure that is illustrated in Figure 2. We
start with two points at a unit separation in a plane with
coordinates x and y. Then, at every generation g, a copy of the
entire structure is rotated an angle α around the end point.

The consecutive rotations illustrated in Figure 2 produce an
ordered structure that is confined to the xy-plane. In order to

introduce randomness as well as a structure that extends in
three dimensions, two additional steps are added to the model:
first, the replacement α→±α+ δα, where δα is a random
addition of zero mean and da aá ñ = 502 is carried out.
Second, an out-of-plane tilting by an average angle of 1/6 is
performed. This has the effect of giving the overall structure an
envelope of aspect ratio c/a= 1/6 as indicated by the fitting of
the ’Oumuamua light curves (Mashchenko 2019).
It should be noted that the present model does not represent

the physics of the aggregation processes leading to fractal
structures (Suyama et al. 2008; Wada et al. 2011; Okuzumi
et al. 2012; Kataoka et al. 2013), but only seeks to capture the
geometric fluctuations that are intrinsic to such fractals. It does,
however, mimic the buckling process that is caused by
colliding dust aggregates (Suyama et al. 2008), by prescribing
an angle between connected particle chains, the smaller the
angle, the larger the fractal dimension. To get the prescribed
D= 2.35 value, an angle of α= 0.48π was used (see
Appendix).
The fractal model is applied to represent the local thickness

fluctuations in the z-direction: the xy-projection of particle
density ρ(x, y) defines the local thickness

( ) ( ) ( )r
r

=L x y
x y

c,
,

2 10

where r is the average of ρ(x. y), so that the average of L is 2c.
This local L-value is then taken as input in Equation (2) to
obtain the local day- and night-side temperature shown in
Figure 3, which also shows two optical images. Note that
regions of high-infrared transparency exist on all scales.
However, observations by an infrared telescope are unlikely

to resolve the level of detail shown in this figure. In order to
determine the average effect of the geometric fluctuations
inherent in a fractal, we may simply integrate the radiation over
the xy-plane. Taking the fluctuations into account in this way,
we may define the effective thermal thickness Leff that gives the
same radiation from a disk with constant thickness (see the
Appendix). In the limit of large system sizes, an asymptotic
value of Leff is expected from the fractal nature of the geometry.
In the Appendix, we obtain the value Leff≈ 2c/5, so, the
fluctuation effect is large; it reflects the nonlinear relationship
between T and L. Using the L→ Leff replacement in
Equation (2) allows for a one-dimensional calculation of the
radiation at each moment in time as θ increases. This was done
calculating the infrared light curves in Figure 4.

2.2. Condition for Observations

The reported sensitivity of the MIRI imager of the James
Webb Space Telescope gives a signal strength at which the
signal-to-noise ratio is 10 for an on-source integration time of
10 ks.1 Reducing the integration time to 1 ks allows for the
resolution of time variations on the timescale of ’Oumuamua’s
rotation period. This implies a corresponding increase in the
noise floor by a factor of 10. In this case, curve fitting of the
predicted MIRI noise floor s, yields the approximation

( ) ( )( )= l l l- + - Ds 10 W m Hz 1132.0 2 20

Figure 2. The first four generations of the fractal model structure.

1 See Figure 1 in user documentation for the James Webb Space Telescope,
MIRI sensitivity (https://jwst-docs.stsci.edu/jwst-mid-infrared-instrument/
miri-predicted-performance/miri-sensitivity).
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where λ is the wavelength of the observed radiation, λ0= 4.0
μm and Δλ= 18.5 μm. To get the comparable prediction of
the signal strength, we use the wavelength of maximum
intensity λm(T)= b/T, where b= 2.9 10−3 K m is the constant
of the Wiens displacement law. The standard Planck spectrum

then gives
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where νm(T)= c/λm(T), h is Planck’s constant, c0 is the speed
of light, and Ro= 0.16 au is the observation distance.

2.3. Predicted Infrared Signals for Different Models

Figure 4 shows the result for all four models over half a
period, beyond which all curves repeat themselves. All thermal
models are run for a number of initial rotations until their light
curves have converged to steady-state values. Only the rock
model maintains an internal temperature below the diffusion
skin depth. However, changing this internal temperature only
changes the surface temperature by ∼1 K, and the steady-state
values are reached to within ∼1% by three rotation periods.
Except for the ice model signal, which falls below the

detection level at all times, the signals are masked by a black
line wherever they fall below the detection level. This level is
defined by the temperature where Im(T)< s, where the

Figure 3. Optical day-side and infrared night-side (bottom figure) radiation
from the geometric CFA model of ’Oumuamua using 8 million particles. The
day-side images correspond to θ = 0′ and 30′ in Figure 1, while the infrared
image is a night-side view of the θ = 0′ orientation.

Figure 4. Top figure: infrared signals in the direction of earth from the different
models over half a period of rotation. The vertical line shows the transition
from the day to night side, and the thick black line mark where the signal falls
below the sensitivity levels of MIRI. The observational distance is 0.16 au.
Bottom figure: zoom-in of the night-side infrared signal.
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sensitivity s is defined in Equation (11) and Im, the predicted
intensity, is given in Equation (12).

Most notably, while the rock model displays a steady signal
decay over the night-side period, the CFA model produces a
second observable maximum. This is the case for the light-sail
model as well, but this signal is easily recognizable since the
day- and night- side maxima have the same values. Also, only
the rock model with its significant heat capacity has a
detectable signal at t= period /4, at which point the CFA
becomes invisible in the infrared region.

3. Discussion

Having identified a set of crucial measurements that
distinguish between the different hypothesis for the structure
of the next ’Oumuamua object using the existing James Webb
Space Telescope has clear advantages. Technical solutions for
chasing it with a dedicated spacecraft that could make close
observations, have been suggested (Seligman & Laughlin 2018;
Hibberd & Hein 2020) and will be much more challenging.

Analysis of ’Oumuamua light curves indicates a tumbling
rotational state (Drahus et al. 2018; Fraser et al. 2018), and the
different ’Oumuamua models are all likely to result in a such a
state. The models that rely on the radiation pressure to explain
the extra-gravitational acceleration would likely acquire such a
state from the YORP effect (Rubincam 2000). In the rock
models where the acceleration is caused by outgassing, a
tumbling state would likely result from the torque created by
the gas pressures (Rafikov 2018). Also, in the case of the rock
model, a tumbling state may have survived interstellar travel
(see Burns & Safranov 1973) from lack of internal dissipation
caused by rotational deformation. Such tumbling has not been
included in our calculations, yet these calculations show that
the infrared signals from the different ’Oumuamua models will
be qualitatively different.

Different shapes and rotational states will affect both the
infrared and optical signals. In the case of the oblate ellipsoidal
shape, which emerged as the more likely one for ’Oumuamua
(Mashchenko 2019), there is significant rotation around a
minor principal axis (the major principal axis being associated
with the maximum moment of inertia). This explains the large
light-curve variations since rotation purely around the major
principle axis would cause no light-curve variations at all.

In the case of a prolate shape, rapid rotation around a minor
principal axis could make the corresponding rotation period
shorter than the thermal relaxation time. This would blur out
the infrared signal variations since the temperature would then
even out on the different sides, thus making the signals from
the CFA and rock models similar. However, this behavior
would be predictable from a proper inversion of the light-curve
data with respect to the rotational state. So, the cases where the
infrared signal is less effective as a tool to discern the different
models are identifiable.

Optical observations that constrain the shape and rotational
state of the object (Mashchenko 2019) will therefore make it
possible to obtain correspondingly different predictions for the
infrared signal of the different models, thus making it possible
to distinguish between them. The main difference between the
infrared predictions for the different models is most pro-
nounced in the night-side signal where the CFA model
produces a weaker maximum that is not present in the other
models. Since this maximum is only a factor of 2 above the 10
SNR noise floor at an observation distance of 0.16 au (the

closest approach of ’Oumuamua), the distinction possibility is
limited to near-Earth observations.

We thank Jane X. Luu and Renaud Toussaint for early
discussions on this work as well as the Research Council of
Norway through its Centers of Excellence funding scheme,
project number 262644.

Appendix

A.1. Fractal Model

The fractal dimension is obtained by noting that the overall
size of the structure is increased by a factor ( )a-2 2 cos as
g→ g+ 1, while the number of links in the structure increases
by a factor 2. At generation number g, the total size of the
structure ( )a= -L 2 2 cosg

g and the number of links
Mg= 2g. Eliminating g between these two equations yields
M= LD where the fractal dimension

( )
( )

a
=

-
D

ln 4

ln 2 2 cos
, A1

or, equivalently ( )a = - -cos 1 2 D D2 .
Figure 5(a) plots the particle number as a function of

distance from the g= 1 starting position for a system of 8
million particles. It shows that the behavior is indeed fractal
over 2–3 orders of magnitude. The crossover behavior at large
scales happens as r approaches the system size.
The number of particles in an object like ’Oumuamua is

about 8 orders of magnitude larger than in our simulations; a
simulation of such particle numbers is beyond the capacity of
any existing computer. However, relative numbers, such as the
volume fraction of regions that have a certain fraction of the
average density, will be constant in systems large enough to
avoid significant finite size effects. The general reason for this
is that a crossover at a certain scale would define a length scale
which is different from both the system size and the particle
size, and the defining feature of a fractal is exactly that it lacks
such intermediate scales.
In the insert of Figure 5(a) the fraction of sites that contain

less than 10% of the average particle number after projection
into the plane that contains the largest semimajor axis a and b is
plotted. The particular number 10% is chosen arbitrarily to
define regions that are significantly thinner than the average,
the point being that this fraction approaches an asymptotic
value already at a particle number of a million. Below that
number, the average number of projected particles is sometimes
below 10, which makes it impossible for a non-zero particle
number to be below 10%. This is a finite size effect. Figure 5(a)
also plots the fraction of projected particle numbers that equal
one. This fraction decays as a power law with an extrapolation
to a few parts per thousand at the size of ’Oumuamua
(M∼ 1018), which shows that only a very small fraction of the
fractal will contain sites that emit infrared radiation without
further scattering. This further justifies the assumption of a
local equilibrium between massive particles and radiation.

A.2. Photon Mean Free Paths in a Fractal

In the following, we derive the mean free paths λ of a photon
emitted from a solid site on a fractal of dimension D and the
mean free path of one starting from an arbitrary location,
starting with the former. In order to do this, we first consider
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the probability P0(r) of an emitted photon not hitting another
particle of radius r0 over a distance r. If we split this distance
into n segments, each of length Δr= r/n, we can write P0(r) as
the product of the probabilities of not hitting a particle in each
of these segments:

( ) ( ( ) ) ( ) p r= - D
=

P r r r r1 . A2
i

n

N i0
0

0
2

Here ri= iΔr and ρN(r) is the number density of particles so
that ( )p rDr r rN i0

2 is the average number of particles in the

volume pD = DV r r0
2. This small average particle number

equals the probability of the photon stopping inside this
volume, and consequently, the expression in parentheses in
Equation (14) is the probability of not hitting a particle
inside ΔV.

Now, taking the log of Equation (14) gives
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where we have used the approximation ( )- » -x xln 1 for
x= 1 in going from the first to the second line, and taken the
Δr→ 0 limit in passing to the last line. Exponentiating gives
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Over the distance r the photon will either be absorbed or not.
So, the probability of being absorbed between r0 and r is
therefore P(r)= 1− P0(r). The probability p(r)dr of being
absorbed between r and r+ dr is therefore

( ) ( ) ( ) ( ) ( )= + - = ¢p r dr P r dr P r P r dr. A5

Note that p(r) is also the distribution of the mean free paths,
which we can now write as
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by using Equations (16) and (17). The mean free path is then
given by

( ) ( )òl =
¥

drrp r . A7
r0

Using the fact that the number density around a particle in a
fractal of dimension D is (Flekkøy et al. 2019)
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the exponent in Equation (18) becomes
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and with the substitution x= r/r0, we find the mean free path
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which we can write as λ= I(D)r0, where the prefactor I(D)∼ 1
as long as D> 2. When D< 2, however, I=∞ , and I→∞ as
D→ 2+. For D= 2.35, as in our case, λ∼ r0.
The probability P0(a) that a photon originating inside the

structure will escape over a distance∼ a is given by
Equation (16), which gives

( )( )( ) ( )( )= - --
-

P a e , A110
1D

a
r

D3
4 2 0

2

which is extremely close to zero as ( ) ~-a r 10D
0

2 5.
The mean free path of a photon starting from an arbitrary

point on a surface that cuts through the fractal is not determined
by the mass density surrounding a solid point, but rather the
average density on that surface. This surface, as well as cross
sections parallel to it, will have an average number density of
particles

( ) ( )r
p

=
-

a
r

a

r

3

4
. A12N

D

0
3

0

3

⎜ ⎟
⎛
⎝

⎞
⎠

In order to estimate the mean free path l from such a surface,
we require that the volume lpr0

2 be equal to the average

Figure 5. (a) The number of particles (mass) of the fractal structure as a function of distance from the initial g = 1 structure. The red line has a slope of 2.35. The insert
shows results from projections of the fractal particle structure into the xy-plane. Black dots show the fraction of sites f that contain only one particle and red dots the
fraction of sites that contain less than 10% of the average particle number. The green dot shows the extrapolation to the number of particles in an ’Oumuamua-sized
fractal. (b) The average effective thermal thickness as a function of system size.

6

The Astrophysical Journal Letters, 925:L11 (7pp), 2022 February 1 Flekkøy & Brodin



volume per particle 1/ρN(a). This gives
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⎞
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A.3. Fractal Fluctuations and the Effective Heat Thickness Leff

The thickness fluctuations of the fractal CFA model will
cause local temperature fluctuations. By averaging the
corresponding radiation σT4 from the surface, it is possible to
define an effective thickness Leff that produces the same
radiation from a disk of that thickness. For the CFA model,
where the thermal diffusion length exceeds the thickness 2c, a
steady-state assumption is justified, in which case we may
replace the temperature gradients in the boundary conditions by
the approximation

( )
( )

( )¶
¶

»
-T L t

z

Tb T

L x y

,

,
, A14

f

where Tf and Tb are the front- and backside surface
temperatures. Then the steady state is described by the energy
balance

( ) ( )
( )

( )
( )

q s k

k s

- = -
-

-
=

p j t T
T T

L x y
T T

L x y
T

1 cos
,

,
, A15

f t
f b

t
f b

b

sun
4

4

where Tf is the day-side temperature and Tb the night-side
temperature. Indeed, solving the full diffusion Equation (1)
with the CFA parameters gives temperature profiles T(x, t) that
are quite linear in x, justifying the use of Equation (27) in
calculating Leff. Figure 5(b) shows how this effective thickness
varies with system size. In these calculations, Leff was averaged
over 20 different structures for each system mass M. The fact
that it converges to an approximate asymptotic value indicates
that the simulations are in the proper large-size regime.

So, Equations (27) were used as an approximation to
produce Figure 3. In the calculations that produced the
temperature values in Figure 4 the substitution L→ Leff was
used in Equation (2) to represent the net effect of local
variability in the transmission of heat.
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