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Based on the energy balance method (EBM), a more accurate analytical solution of the pendulum 
equation with rotating support was presented. The results were compared with those obtained by the 
differential transformation method (DTM) and He’s improved energy balance method. It was shown that 
the results are more accurate than the said methods. 
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INTRODUCTION 
 
Many scientific problems in natural sciences and 
engineering are inherently nonlinear, but it is difficult to 
determine their exact solutions. Many analytical methods 
are available to find their approximate solution. The 
perturbation methods (Nayfeh, 1973; He, 2006) were 
originally developed for handling weak nonlinear 
problems. Recently, some of them were modified 
(Cheung et al., 1991) to investigate strong nonlinear 
problems. Homotopy perturbation (Belendez, 2007; Ganji 
and Sadighi, 2006; Belendez et al., 2008; Ozis and 
Yildirim, 2007), iteration method (Haque et al., 2013; 
Jamshidi and Ganji, 2010; Lim et al., 2006; Baghani et 
al., 2012; Rafei et al., 2007) are useful for obtaining 
approximate periodic solution with large amplitude of 
oscillations; however, they are applicable only for odd 
nonlinearity problems. Harmonic balance method 
(Mickens, 1986; Lim et al., 2005; Belendez et al., 2006; 
Wu et al., 2006; Mickens, 2007; Alam et al., 2007; 
Belendez et al., 2009; Lai et al., 2009; Hosen et al., 2012) 
 

is a powerful method in which truncated Fourier series is 
used. Iterative homotopy harmonic balance (Guo and 
Leung, 2010), differential transformation (Ghafoori et al., 
2011) and max-min (Yazdi et al., 2012) methods have 
been developed for solving strongly nonlinear oscillators. 
Energy balance method (He, 2002; Khan and Mirzabeigy, 
2014; Alam et al., 2016; Mehdipour et al., 2010; Ebru et 
al., 2016; Zhang et al., 2009) is another widely used 
technique for solving strongly nonlinear oscillators. 
Though, all these analytical methods have been 
developed for handling nonlinear oscillator, they provide 
almost similar results for a particular approximation. 
Recently, EBM has been modified by truncating some 
higher order terms of the algebraic equations of related 
variables to the solution (Alam et al., 2016) and it 
measures more correct result than the usual method. 
Moreover, the modification on EBM   used   in   Alam   et 
al.   (2016)  is   valid  for  some nonlinear oscillators, 

especially when )()( xfxf  . 

*Corresponding author. E-mail: helal.mathru@yahoo.com. 

  

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution 

License 4.0 International License 

http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


2          Afr. J. Math. Comput. Sci. Res. 
 
 
 

In this article, the EBM (Alam et al., 2016) was utilized 
to determine the approximate solution of pendulum 
equation with rotating support. This type of oscillator was 
analyzed by Ghafoori et al. (2011) applying differential 
transformation method (DTM), Belendez et al. (2006) 
using harmonic balance method and Yazdi et al. (2012) 
using max-min approach. He (2002) first introduced 
energy balance method and Khan and Mirzabeigy (2014) 
was used to improve accuracy of He’s energy balance 
method to obtain the solution of pendulum equation with 
rotating support. The present method can be applied to 
nonlinear oscillatory systems where the nonlinear terms 
are not small and no perturbation parameter is required.  
 
 

THE BASIC IDEA OF HE’S ENERGY BALANCE METHODS 
 
A general form of nonlinear oscillator is  
 

,0)(  xfx  ,0)0(,)0(  xAx                              (1) 

 

where over dot denotes the derivative with respect to time t , 

)(xf  is a nonlinear function such that )()( xfxf  . 

According to the variational principle, Equation (1) can be written 
as: 
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where  /2T   is a period of the oscillation,   is the 

frequency of the oscillator (to be determined) and 

 dxxfxF )()( . The Hamiltonian of Equation (2) is presented 

by the following equation: 
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which provides the following residual 
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The first-order approximate solution of Equation (1) is assumed in 
the following form: 
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Substituting Equation (5) into Equation (4), we obtain: 
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When 4/ t  (collocation principle), it becomes: 
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Improved energy balance method  
 
Khan and Mirzabeigy (2014) considered the solution: 
 

.3coscos)( 1 tbtbtx                                                  (8) 

 

According to initial conditions, it becomes 
 

1bbA                                                        (9) 

 

Eliminating 1b  from Equations (8)-(9), the solution takes the form: 

  

.3cos)(cos)( tbAtbtx                             (10) 

 

By substitution of Equation (10) into Equation (4), the residual is 

obtained, which contain two unknown parameters,   and b . For 

determining these parameters, two equations are essential; the first 
equation obtained by collocation method as follows: 
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Then the second equation is obtained using Galerkin-Petrov 
method as follows:    
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By solving Equations (11) and (12) simultaneously,   and b are 

determined. 
 
 

More accurate solution 
 

Let us consider )1( uAb  , Aub 1  (where u  is an 

unknown constant) and then Equation (8) becomes: 
   

)3coscos)1(()( tutuAtx   .            (13) 

 
Substituting Equation (13) into Equation (4) residual is obtained as: 
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This residual contain two unknown constants   and u . In order to 

determine these constants, we need two equations which are 
obtained from: 
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Solving these two equations simultaneously, we obtain   and u . 

 
 
Application 
 

Mathematical model of a pendulum attached  to  a  rotating  support 
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Table 1. Comparison of the present solution with Ghafoori et al. (2011), Khan and Mirzabeigy (2014) and corresponding numerical solution for 

x(t) and 1A .  

 

t 
Nuerical 
solution 

DTM (Ghafoori 

et al., 2011) 
(% error) 

Improved EBM (Khan and 
Mirzabeigy, 2014) 

(% error) 
Present 
method 

(% error) 

0 1 1 0.000000 1 0.000000 1 0.000000 

1 0.820933 0.825443 0.549375 0.824193 0.397109 0.820853 0.009745 

2 0.412192 0.422288 2.449340 0.416311 0.999292 0.410502 0.410003 

3 -0.04611 0.032546 29.416612 -0.045082 2.229451 -0.046006 0.225548 

4 -0.50203 -0.485740 3.244826 -0.503957 0.383842 -0.501056 0.194012 

5 -0.88241 -0.869266 1.489557 -0.883181 0.087374 -0.882731 0.036377 

6 -0.99224 -0.996193 0.398392 -0.992855 0.061981 -0.992178 0.006248 

7 -0.75008 -0.776877 3.572552 -0.756222 0.818846 -0.749394 0.091456 

8 -0.32098 -0.358097 11.563648 -0.327212 1.941553 -0.318759 0.691943 

9 0.138314 0.097636 29.409893 0.135246 2.218141 0.138176 0.099772 

10 0.589446 0.548088 7.016418 0.589124 0.054627 0.589274 0.029179 
 

 Where (% error) denotes the absolute percentage error. 

 
 
 

 (Ghafoori et al., 2011; Khan and Mirzabeigy, 2014) is expressed as  
 

0)0(,)0(,0))cos(1)(sin(  xAxxxx  ,            (16) 

 

where, 
g

r2
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Without loss of generality, we set .1  Equation (16) can be 

expanded up to seventh order as follows: 
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According to the variational principle, Equation (17) can be written 
as: 
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Its Hamiltonian becomes 
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Also, residual of Equation (19) is: 
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Substituting Equation (13) into Equation (20) and using Equation 

(15), we obtain respectively for 2,1n   
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Eliminating 
2  between Equations (21) and (22) and ignoring 

more than third order terms of u , we obtain: 
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From Equation (23), the value of u  is obtained. But it is a cubical 

equation. It is noted that the coefficient of 
3u is small. Ignoring this 

term, its solution is obtained as 0u . Then, 
3u can be written as 

0
2uu . Thus, Equation (23) again becomes a quadratic equation, 

whose smallest solution is the required value of u . Substituting the 

value of u  into Equation (21),   is obtained. 

 
 
RESULTS AND DISCUSSION 

 
A more accurate solution of Equation (16) was 
determined. The solution was compared with those 
presented by Ghafoori et al. (2011) and Khan and 
Mirzabeigy (2014). All the results together with numerical 
solution (obtained by fourth-order Runge–Kutta formula) 
are presented in Table 1. From the results shown in the 
table, it is clear that the percentage error of the present 
solution did not exceed 0.69%. On the contrary, the 
maximum percentage errors of DTM (Ghafoori et al., 
2011) and improved EBM (Khan and Mirzabeigy, 2014) 
are respectively 29.41 and 2.22%. Thus, the present 
method provides more accurate solution. 
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Conclusion 
 
Based on EBM, an analytical approximate solution was 
presented for solving pendulum equation with rotating 
support. The solution is nicely close to the exact results 
and are much better than those obtained by differential 
transformation method (DTM) (Ghafoori et al., 2011) and 
improved accuracy of He’s energy balance method (Khan 
and Mirzabeigy, 2014). The relative error of the present 
method is lower than those obtained by others (Ghafoori 
et al., 2011; Khan and Mirzabeigy, 2014). 
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