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ABSTRACT 
 

The demand for efficient and environmentally friendly spark ignition (SI) engines has driven 
researchers to explore advanced methods for optimizing engine performance and reducing 
emissions. One such method is the use of Artificial Neural Networks (ANNs) to develop predictive 
models that can accurately estimate engine performance under various operating conditions. This 
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study presents the design and implementation of an ANN-based performance prediction system for 
spark ignition engines, focusing on critical performance metrics. An ANN based model and network 
architecture were developed and simulated in MATLAB neural network toolbox environment. The 
search for efficient network architecture was performed in terms of activation function, number of 
hidden layers, number of neurons in the hidden layers and the type of training function using 
highest regression value criteria. The ANN predicted results were validated by comparing with 
corresponding actual values obtained from experiments using t test. The search for efficient 
network architectures showed that 6 – 13 – 9 – 6 – 8 network architecture gave the best predicted 
results for the ANN model. Logsig activation function and trainlm training function gave reliable 
predicted results for the model. The results of the t test and comparison of ANN predicted results 
with actual experimental results showed that there is no significant difference between the two sets 
of results at 5% level of significance. The results also showed that 28 neurons distributed into three 
hidden layers have capability to map and generalize the non-linear data effectively thereby 
predicting the results accurately. It is observed that Increasing the number of neurons in the 
network generally increases the ability of the network to predict accurate results but beyond a 
certain limit this ability decreases due to overgeneralization of the non-linear data. It is concluded 
that the developed ANN based prediction system for SI engines is robust and capable of giving 
accurate results. 
 

 
Keywords: Artificial neural network; exhaust gas emissions and SI engine; activation function; 

regression value. 
 

ABBREVIATIONS 
 

SI : Spark Ignition 
HC : Hydrocarbon 
CO : Carbon monoxide 
N𝑂𝑥 : Oxides of Nitrogen 
BSFC : Brake Specific Fuel Consumption 
BP : Brake Power 
BMEP : Brake Mean Effective Pressure 
EGR : Exhaust Gas Recirculation 
ANN : Artificial Neural Network 
 

1. INTRODUCTION 
 

Spark Ignition (SI) engines, which rely on the 
combustion of a precisely controlled air-fuel 
mixture to generate power, are widely used in 
automotive and power generation industries due 
to their efficiency, reliability, and relatively low 
operating costs. However, increasing global 
concerns over fuel consumption, greenhouse gas 
emissions, and environmental sustainability have 
pushed researchers and manufacturers to focus 
on improving the performance and efficiency of 
these engines while simultaneously reducing 
emissions. Traditional methods for optimizing 
engine performance, such as experimental 
testing and model-based simulations, are time-
consuming, costly, and may not fully capture the 
complexities of engine dynamics under varying 
operating conditions (Semin et al. 2008, 
Kalvakala et al. 2021, Heywood 2018). 
 

Conducting performance experiments on engine 
operations using different fuels requires 

significant time and financial investment. In this 
context, artificial neural networks (ANNs) can be 
utilized to reduce both costs and time [Machesa 
et al., 2022; Nwufo et al., 2017; Ghazikhani and 
Mirzaii, 2011]. Machine learning technology can 
identify the relationship between engine 
characteristics and performance (Marianingsih et 
al., 2023).  The ANN model can process multiple 
input variables to predict various output 
variables. Predictions made by a trained ANN 
are generally much faster than those from 
conventional simulation programs or 
mathematical models, as they do not rely on 
time-consuming iterative calculations or the 
solving of differential equations using numerical 
methods (Zhou et al., 2022). In recent years, 
Artificial Neural Networks (ANNs), a subset of 
machine learning algorithms, have emerged as a 
powerful tool for modeling and predicting 
complex nonlinear systems, including internal 
combustion engines. ANNs are particularly well-
suited for performance prediction tasks              
because of their ability to learn from large 
datasets and identify patterns in highly nonlinear 
relationships between input and output 
parameters. These capabilities have led to their 
growing application in engine modeling, 
optimization, and control. ANNs can serve as 
effective alternatives to conventional predictive 
techniques by offering faster, more accurate 
predictions of engine performance metrics               
such as power output, fuel efficiency, and 
emissions, based on input variables like engine 
speed, load, air-fuel ratio, and ignition timing 

https://www.researchgate.net/profile/Susi-Marianingsih-2?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
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(Kojima and Lovei 2004, Andwari et al. 2019, 
Delvi et al. 2019). 
 
Several studies have demonstrated the 
effectiveness of ANN models in engine 
performance prediction (Machesa et al., 2020). 
For instance, a study by (Adio et al. 20221) used 
an ANN to predict the performance and 
emissions characteristics of a gasoline engine, 
achieving high accuracy compared to 
experimental data. Similarly, (Sellnau et al. 
2000). developed an ANN-based model to 
estimate engine parameters, demonstrating the 
potential of   neural networks in optimizing 
engine performance across a wide range of 
operating conditions. 
 
The primary motivation for developing an ANN-
based performance prediction system for spark 
ignition engines is the need to improve engine 
efficiency and reduce emissions in a cost-
effective and timely manner. By leveraging the 
predictive power of ANNs, engine designers and 
manufacturers can optimize engine settings in 
real time, enhancing fuel economy, improving 
power output, and minimizing harmful emissions, 
all while reducing the need for extensive 
experimental testing (Mohiuddin et al. 2021, 
Newman et al. 2000, Wani 2018). “Improving the 
performance of internal combustion engines is 
one of the major concerns of researchers. 
Experimental studies are more expensive than 
computational studies. Also using computational 
techniques allows one to obtain all required data 
for the cylinder, some of which could not be 
measured” (Shehata and Razek 2008, Narcizo 
and Miranda 2019, Anderson 2002). 
 
The traditional approach taken to model the 
spark-ignition engine is to divide the cylinder 
contents into two thermodynamic zones, each 
with its own temperature and composition 
(Blazek 2004, Huang et al. 2021). The flame 
separates the cylinder content into burned zone 
at high temperature and unburned zone at lower 
temperature. Each zone is assumed to be a 
homogeneous mixture of N species each 
modeled as an ideal gas (Krishnamoorthi et al. 
2019, Stthiracha 2006). “Simulation is the 
process of designing a mathematical or logical 
model of a real system and then conducting 
computer based experiments with the model to 
describe, explain and predict the behaviours of 
the real system” (Udayraj 2011, Gwilliam et al. 
2004, Beale and Demuth 2010, Ghanim et al. 
2021, Kaplan et al. 2018, Mashkour and 
Ibraheem 2018). 

“The good ability of artificial neural networks 
(ANN) for modeling nonlinear phenomena (like 
processes occurring in spark ignition engines) 
because they are themselves nonlinear together 
with their relatively simple application procedure 
is the reason for their wide usage. The goal of 
this technique is to significantly decrease 
dynamometer test requirements by generating 
mathematical models of the output using smaller 
subset of dynamometer test” (Obodey and Ajuwa 
2008, Biswal et al. 2020). “The goal is to present, 
while using the minimum number of experimental 
tests, a fast and practical simulation procedure 
capable of predicting performance parameters 
and exhaust emissions of spark ignition engines. 
Various approaches have been proposed for 
using ANN to promote modeling and calibration 
of engines. ANNs are suited for formulating 
objective functions, evaluating the specific 
engine performance indices with respect to the 
controllable engine variables and thus driving 
engine calibration correlation. They are 
computationally efficient for optimization 
requiring hundreds of function evaluations” 
(Obodey and Ajuwa 2008, Najafi et al. 2018, 
Onawunmi et al. 2019, Tahboub et al. 2016).  
 

Ever tightening environmental legislation drive a 
significant research effort to reduce the 
environmental impacts of hydrocarbon fuel 
combustion in IC engines. However, most of 
these researches are based on thermodynamic 
and fluid dynamics models with very little effort 
devoted to other techniques such as artificial 
neural network. 
 

2. METHODOLOGY 
 

This study investigated the effect of varying six 
operating parameters on the performance 
characteristics of spark ignition engines using 
different artificial neural networks. The operating 
parameters that were varied are termed as input 
parameters while performance parameters are 
termed as output parameters. 
 

Performance characteristics of SI engines using 
several artificial neural networks with different 
combinations of ANN parameters were 
simulated. The simulation procedure was 
implemented in MATLAB environment using 
neural network tool box. 
 

2.1 Input Parameters 
 

The six input parameters considered are: 
 

(i) Engine load  
(ii) Engine speed  
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(iii) Equivalence ratio  
(iv) Ignition timing 
(v) Compression ratio 
(vi) Exhaust gas recirculation 

 

2.2 Output Parameters 
 

The output parameters are made up of five 
performance parameters and three exhaust gas 
emission parameters. The parameters 
considered are: 
 

(i) Brake Specific fuel consumption (BSFC) - 
Performance parameters 

(ii) Brake power (BP) - Performance 
parameters 

(iii) Brake mean effective pressure (BMEP) 
Performance parameters 

(iv) Thermal efficiency (ηth) - Performances 
parameters 

(v) Exhaust gas temperature (TEG) - 
Performance parameters 

(vi) Unburned Hydrocarbon (HC) – Exhaust 
gas emission 

(vii) Carbon monoxide (CO) - Exhaust gas 
emission 

(viii) Oxides of Nitrogen (NOX) - Exhaust gas 
emission 

 

2.3 Development of Network Architecture 
for ANN Model 

 

Artificial neural networks are computational 
models which can be used in a wide variety of 
situation. The most important feature of ANN is 
their ability to solve problem through learning by 
example rather than by becoming involved in the 
detailed characteristics of the systems. The basic 
element of an ANN is the neuron. Neuron model 
are in fact more closely related to traditional 
mathematical models than they are to biological 
models. A neuron model consists of three basic 
parts: 
 

(i) Synapse or connecting Link: Each of these 
is characterized by a particular weight or 
strength of its own. 

(ii) Adder: For summing the input signals, 
weighted by respective synapses of the 
neuron. 

(iii) Activation function: For limiting the 
amplitude of the output of a neuron. 

 

In mathematical terms, a neuron j may be 
described by writing the following equation: 
 

  yj = φ (∑ Wji xi

N

i=0
)            (1) 

Where:     
  
𝑦𝑗 = Output of the neuron 

𝜑 =  Activation function 

𝑊𝑗𝑖= Synaptic weights 

𝑋i = inputs to the neuron 
N = Number of inputs 
 

For a multi-layer perception (MLP) model with 
several neurons and several layers of neuron 
used in this work, certain model parameters must 
be selected after careful investigation. These 
parameters are: 
 

1) Type of activation function   
2) No of hidden layers 
3) No of neurons in the hidden layers 
4) Choice of training algorithm which will 

influence synaptic weight and bias. 
 

In this study, ANN model has one input layer 
consisting of six neurons, H hidden layers 
consisting of NH neurons and one output layer 
consisting of eight neurons 
 

For this,  
 

The equation connecting the input layer to the 
hidden layers is: 
 

(∑ 𝑊𝑖𝑗 𝑁
𝑗=1 𝐼𝑗)              (2) 

 

And the equation connecting the hidden layers to 
the output layer is 

 
∑ 𝑊𝑖𝜑

𝑁
𝑗=1                                                                   (3) 

 
To get the required ANN model, we combine 
equations 2 and 3 
 
∴ The ANN model is  
 

 𝑦𝑘 = ∑ 𝑊𝑖
𝑁𝐻
𝑙=1 𝜑 (∑ 𝑊𝑖𝑗

𝑁

𝑗=1 𝐼𝑙)                     (4)  

 
Where  
 
𝑦𝑘 = outputs of the ANN model  
K = number of output  
NH = number of neurons in the hidden layers  
H = number of hidden layers  
Wi = synaptic weights connecting the hidden 
layers with output 
Wij = synaptic weights connecting the inputs to 
the hidden layers 
N = number of inputs  
𝜑 = activation / transfer function  
Ij = Inputs to the ANN model  
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2.4 Simulation Procedure  
 
There were 425 engine data patterns available, 
which were partitioned randomly into three sets. 
70% of the data were used for training the 
network, 15% of the data were used for 
validating the network and the remaining 15% of 
the data were used to test the network. Network 
training can be made more efficient if certain 
preprocessing steps such as normalization are 
performed on the network inputs and target 
outputs. Normalization step was applied to both 
the input vectors and the target vectors in the 
data set. The network output was then reversed 
transformed back into the units of the original 
target data.  Several ANN parameters were 
investigated in details in order to get efficient 
network architecture for the ANN model. The 
ANN parameters considered were: 
 

(i) Activation / transfer function:  Three 
different activation functions (Purelin, 
Logsig and Tansig) which are the most 
commonly used and most accurate 
activation functions available from 
literatures were investigated.  

(ii) Number of hidden layers: One, two and 
three hidden layers were considered at 
several levels and at different 
combinations. 

(iii) Number of neurons in the hidden 
layers:  Several iterations at several levels 
using different combinations of neurons 
were investigated. 

(iv) Training function: Three different training 
functions trainlm (Levenberg – Marquardt 
algorithm), trainrp (Resilient back 
propagation algorithm) and trainscg 
(Scaled conjugate gradient) were 
investigated in details. 

  

2.5 Statistical Analysis 
 
All statistical tests share the same principle 
which is that they compare the observed or 
predicted results with an expected or actual 
value based on dataset used and come up with a 
test statistic. In this work, there were two sets of 
results, which are the actual values of output and 
the ANN predicted values of output. The best 
and most popular statistical methods for 
analyzing differences between two groups of 
dataset is t test and was therefore used in this 
work. 
 
The t test gives an indication of the separateness 
of two sets of measurement and is thus used to 

check whether two sets of data are essentially 
different. The typical way of doing these is with 
the null hypothesis that means of the two sets of 
data are equal. The equation of t test is given 
below: 
 

𝑡 =
𝑋1̅̅ ̅̅ −𝑋2̅̅ ̅̅

𝑣𝑎𝑟1

𝑛
+

𝑣𝑎𝑟2

𝑛

             (5) 

 
Where  
 

X1 = actual values 
X2 = ANN predicted values  

𝑋1
̅̅ ̅  = mean of X1 

𝑋2
̅̅ ̅ = mean of X2 
𝑉𝑎𝑟1 = Variance = standard deviation squared 
(SD2) of X1 
𝑉𝑎𝑟2 = Variance =standard deviation squared 
(SD2) of X2 
n = number of samples (= 425) 
t = t stat (calculated value of t) 
 
Degree of freedom = (n1 + n2) – 2 = 850 – 2 = 
848 
 
The null hypothesis is  𝜇1 − 𝜇2  = 0 
 
This means that there is no significant difference 
between the two means  
 
The confidence level used is 95% = 0.05 level of 
significance 
 
The criterion is: Reject the null hypothesis if  
 
t stat > t critical 
 
Where, t critical = t tabulated 
 

3. RESULTS AND DISCUSSION 
 
Fig. 1 shows the effect of number of neurons on 
the regression value obtained at different 
activation functions. From the figure, it can be 
seen that regression increases with increase in 
number of neurons from 24 neurons to 28 
neurons after which regression values decreases 
for all the three activation functions considered. 
Logsig activation function gave the highest 
regression value followed by Tansig activation 
function while Purelin activation function gave the 
lowest regression value. The highest regression 
value of 0.99787 was obtained for Logsig 
activation function using 28 neurons while the 
lowest value of 0.94321 was obtained using 24 
neurons. The highest percentage increase of 
8.13% in the regression value was obtained for 
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Tansig activation function when no of neurons 
increases from 26 to 28. This result shows that 
Logsig activation function gave the best output 
result; this may be due to the fact that sigmoid 
(Logsig) functions are continuous and 
differentiable hence they are able to fit in to non-
linear data such as that encountered in SI 
engines. 
 
Fig. 2 shows the effect of number of neurons on 
regression value obtained for different no of 
hidden layers. It can be seen from the figure that 
regression value increases with increase in the 
number of hidden layer up to three layers.  The 
lowest regression value of 0.71657 was obtained 
when one hidden layer and 18 neurons were 
used while the highest regression value of 
0.99787 was obtained when three hidden layers 
and 28 neurons were used. Regression value 
increases from 0.71657 to 0.78431 when the 
number of neurons increases from 18 to 33 
before reducing to 0.76321 when number of 
neurons increases to 38 for one hidden layer. For 
two and three hidden layers, regression values 
increase with number of neurons up to 28 
neurons before deceasing again with further 
increase in number of neurons. The results 
obtained may be due to the fact that increasing 
the number of hidden layers up to three hidden 
layers usually increases the mapping capability 
and capacity to generalize of the neural network. 
Whereas, increasing the number of neurons 
beyond a certain limit depending on the particular 
network will cause over fitting and over 
generalization of the training data hence, its 

capacity to predict results accurately will be 
diminished. 
 
Fig. 3 shows the effect of training function on 
regression value using different number of 
neurons. From the figure, it can be seen that 
trainlm training function gave the highest 
regression values for all the different numbers of 
neurons considered. The lowest regression value 
of 0.79985 was obtained with trainscg training 
function and 20 neurons while the highest 
regression value of 0.99787 was obtained with 
trainlm and 28 neurons. The result obtained may 
be due to the fact that trainlm performs better on 
function fitting (nonlinear regression) problems 
and is the fastest (in MATLAB neural network 
toolbox) compared with the other two training 
functions. Hence it constantly gave the highest 
regression values. 
 
Table 1 shows the arrangement of hidden layer 
neurons. From the figure, it can be seen that 28 
neurons with 13 neurons in the first hidden layer, 
9 neurons in the second hidden layer and 6 
neurons in the third hidden layer gave the 
highest regression value of 0.99787. This             
result was obtained after several iteration steps 
using all the three activation functions and 
training functions considered. Although the table 
only shows the case when Logsig activation 
function and trainlm training function, which gave 
the highest regression value, were used. This 
result shows that the optimum network 
architecture was obtained when this arrangement 
is used.  
  

 
 

Fig. 1. The effect of number of neuron on regression value at different activation function 
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Fig. 2. The effect of number of neuron on regression value at different number of hidden layers 
 

 
 

Fig. 3. The effect of number of neuron on regression value at different training functions 
 
Tables 2 to 9 present results acquired through 
statistical analysis using t test for two sample 
assuming unequal variances. The ANN predicted 
results were compared with actual results to 
check if there is significant difference between 
the two results. Each of the eight output 
parameters of the ANN predicted results were 
compared with their corresponding parameters 
from actual results using t test for the. For BSFC, 
t stat is -0.008474 which is less than t critical 
(two tail) value of 1.962765 and P (two tail) value 
of 0.993240 is much greater than 0.05 

significance level, hence the null hypothesis 
which states that there is no significant difference 
between the ANN predicted results and the 
actual experimental results is accepted. For BP, 
P (two tail) value of 0.938225 is greater than 
0.05, this means that there is 93% chance that 
there is no significant difference between two 
sets of results. For BMEP, t start value of 
0.108318 is less than t critical (two tail) value of 
1.962765 hence, the null hypothesis is accepted. 
For thermal efficiency, P (two tail) value of 
0.982898 is greater than the significance level of 
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0.05. This means that there is 98% chance that 
there is no significant difference between the two 
sets of results; hence the null hypothesis is 
accepted. Exhaust gas temperature has t start 
value of 0.179837 which is less than t critical 
(two tail) value of 1.962768 hence, the null 
hypothesis is accepted. 
 
HC emission has t start value of -0.137501 which 
is less than t critical (two tail) value of 1.962765, 

hence the null hypothesis is accepted since t 
start < t critical. For CO emission, P (two tail) 
value of 0.985586 is greater than the significance 
level of 0.05. This shows that there is 98% 
chance that there is no significant difference 
between the two sets of results; hence the null 
hypothesis is accepted. For NOX emission, t start 
value of -0.326245 is less than t critical (two tail) 
value of 1.964027 hence, the null hypothesis is 
accepted.  

 
Table 1.  Hidden layer neurons for ANN model 

 

S/N   1st Layer       2nd Layer       3rd Layer                    R               Epoch (Iteration)       Time 

1. 11  9  6          0.99561  661  1:31 
2. 12  9  6          0.99733  734  1:44 
3. 13  9  6          0.99787  848  2:05 
4. 14  9  6          0.99750  346  0:55 
5. 15  9  6          0.99709  604  1:41 
6. 13  7  6          0.99650  852  1:55 
7. 13  8  6          0.99753  572  1:24 
8. 13  9  6          0.99787  848  2:05 
9. 13  10  6          0.99610  393  1:06 
10. 13  11  6          0.98790  743  2:11 
11. 13  9  4          0.97553  367  0:56 
12. 13  9  5          0.97868  329  0:54 
13. 13  9  6          0.99787  848  2:05 
14. 13  9  7          0.99509  846  2:18 
15. 13  9  8          0.99128  522  1:37 

 

Table 2. t Test for Brake Specific Fuel Consumption (BSFC) 
 

  Variable 1 Variable 2 

Mean 273.7411765 273.7589932 
Variance 940.1403996 938.5539194 
Observations 425 425 
Hypothesized Mean Difference 0 

 

Df 848 
 

t Stat -0.008474134 
 

P(T<=t) one-tail 0.496620347 
 

t Critical one-tail 1.646652501 
 

P(T<=t) two-tail 0.993240693 
 

t Critical two-tail 1.962765403   
 

Table 3. t Test for Brake Power (BP) 
 

  Variable 1 Variable 2 

Mean 23.28705882 23.26896099 
Variance 11.71339345 11.44848535 
Observations 425 425 
Hypothesized Mean Difference 0 

 

Df 848 
 

t Stat 0.077523647 
 

P(T<=t) one-tail 0.469112634 
 

t Critical one-tail 1.646652501 
 

P(T<=t) two-tail 0.938225268 
 

t Critical two-tail 1.962765403   
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Table 4. t Test for Brake Mean Effective Pressure (BMEP) 
 

  Variable 1 Variable 2 

Mean 649.4423529 648.2381688 
Variance 26074.47367 26450.76262 
Observations 425 425 
Hypothesized Mean Difference 0 

 

Df 848 
 

t Stat 0.108318684 
 

P(T<=t) one-tail 0.456884263 
 

t Critical one-tail 1.646652501 
 

P(T<=t) two-tail 0.913768526 
 

t Critical two-tail 1.962765403   

 
Table 5. t Test for Thermal Efficiency (ηth) 

 

  Variable 1 Variable 2 

Mean 22.12823529 22.1231509 
Variance 12.16571032 11.73266709 
Observations 425 425 
Hypothesized Mean Difference 0 

 

Df 848 
 

t Stat 0.021441198 
 

P(T<=t) one-tail 0.491449377 
 

t Critical one-tail 1.646652501 
 

P(T<=t) two-tail 0.982898753 
 

t Critical two-tail 1.962765403   

 
Table 6. t Test for Exhaust Gas Temperature (TEG) 

 

  Variable 1 Variable 2 

Mean 511.4070588 510.2671827 
Variance 8886.463629 8187.813689 
Observations 425 425 
Hypothesized Mean Difference 0 

 

Df 847 
 

t Stat 0.179837798 
 

P(T<=t) one-tail 0.428661462 
 

t Critical one-tail 1.646654627 
 

P(T<=t) two-tail 0.857322923 
 

t Critical two-tail 1.962768716   

 
Table 7. t Test for unburned Hydrocarbon (HC) Emission 

 

  Variable 1 Variable 2 

Mean 1709.576471 1712.611868 
Variance 103087.2023 104025.5799 
Observations 425 425 
Hypothesized Mean Difference 0 

 

Df 848 
 

t Stat -0.137501242 
 

P(T<=t) one-tail 0.445333626 
 

t Critical one-tail 1.646652501 
 

P(T<=t) two-tail 0.890667252 
 

t Critical two-tail 1.962765403   
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Table 8. t Test for Carbon Monoxide (CO) Emission 
 

  Variable 1 Variable 2 

Mean 6657.294118 6658.572817 
Variance 1069581.104 1058236.047 
Observations 425 425 
Hypothesized Mean Difference 0 

 

Df 848 
 

t Stat -0.018071558 
 

P(T<=t) one-tail 0.492793009 
 

t Critical one-tail 1.646652501 
 

P(T<=t) two-tail 0.985586019 
 

t Critical two-tail 1.962765403   

 
Table 9. t Test for Oxides of Nitrogen (NOX) Emission 

 

  Variable 1 Variable 2 

Mean 649.9058824 655.3514457 
Variance 98947.63263 19461.25128 
Observations 425 425 
Hypothesized Mean Difference 0 

 

Df 585 
 

t Stat -0.326245956 
 

P(T<=t) one-tail 0.372177475 
 

t Critical one-tail 1.647462515 
 

P(T<=t) two-tail 0.74435495 
 

t Critical two-tail 1.964027409   

 
The results obtained in this work is in agreement 
with the results obtained by (Heywood 2018, 
Biswal et al. 2020, Najafi et al. 2018, Esposito et 
al. 2020) and the results follow the same trend. 
 

4. CONCLUSIONS 
 
The present work investigated the performance 
prediction system for spark ignition engines using 
different artificial neural networks. ANN model 
and network architecture were developed and 
simulated in MATLAB neural network toolbox 
environment. Based on the various results 
obtained and the findings of this study, the 
following conclusions can be drawn.  
 

(i) Logsig activation function has capability for 
mapping and predicting non-linear data 
better than Tansig and Purelin activation 
functions. 

(ii) Increasing the number of hidden layers up 
to three increases the capacity of the 
network to generalize non-linear data and 
hence increases its ability to predict results 
accurately. 

(iii) Trainlm training function has capability to 
learn non-linear data and predicts accurate 
results better and faster than trainrp and 
trainscg. 

(iv) Increasing the number of neurons in the 
network generally increases the ability of 
the network to predict accurate results but 
beyond a certain limit this ability decreases 
due to overgeneralization of the non-linear 
data. 

(v) Based on the results of this study, it can be 
concluded that a robust and reliable ANN 
prediction system for SI engines has been 
developed.     
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