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ABSTRACT

This paper introduces novel methods and perspectives in combination theory, with a focus on the concept of
choice combination. We present a new theorem for calculating choice combinations, explore its properties, and
demonstrate its applications. The work extends traditional combinatorial concepts and provides insights into
the structure of combinatorial sets. Our findings have potential applications in diverse fields such as probability
theory, statistical mechanics, and computer science. We also introduce polynomial statements and binary
polynomial statements as methods for selecting new sets from given choice combinations, and present the
Chairux Binary Set Equation as a new combinatorial identity.
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1 INTRODUCTION

Combination theory plays a crucial role in various
branches of mathematics and its applications [1]. While
traditional combinatorics focuses on replacement-free
selections, the concept of choice combination allows for
a more flexible approach, incorporating repetitions and
order [2].

This paper introduces the concept of choice
combination, denoted as Cj, where n represents the
number of elements and ¢ the number of groups
[38, 4]. We present a new theorem for calculating
these combinations and explore their properties.
Furthermore, we introduce polynomial statements and
binary polynomial statements as methods for selecting
new sets from given choice combinations.

Our work builds upon the foundations laid by earlier
researchers in the field [5, 6, 7, 8, 9, 10, 11].

2 CHOICE COMBINATIONS

Definition 2.1. Let C be a combinatoric set, and let
n,g € N. The choice combination C¢ is defined as the
number of ways to choose n elements from a set of g
distinct types of elements, with replacement and where
order matters.

Theorem 2.2. For all integersn > 1 andg > 1,

— 1%y
cg—lgtn=L! = Hm+n

gl(n—1)! o M

Proof. We prove this theorem by induction on g.

Base case: When g = 1, we have:

1+n—-1)! n!
1(n —1)!

=N

1 (
On = T lU(n-1)!

This is correct, as there are n ways to choose one
element from n elements with replacement.

Inductive step: Assume the theorem holds for some
k > 1. We will prove it holds for £ + 1.

n
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cytt=>"cr
i=1

n

_Z(k+i—1)!
S k(i - 1)
1 (k+i—1
:klz< k >
i=1

7l k+n
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(k+n)!
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The last step uses the hockey-stick identity. This
completes the inductive step, proving the theorem for
all positive integers g.

O

Remark 2.3. The formula in Theorem 2.2 can also be
written as a binomial coefficient:

o9 — n+g—1

This form is sometimes referred to as the "stars and
bars” representation in combinatorics.

3 PROPERTIES OF CHOICE
COMBINATIONS

Proposition 3.1. For all integers n,g the following
properties hold:

1. 09=CY=1
2.09=0 Yn<0
3. Cl=n VYneN
4. gCy =nCy
5 oo {(_1)g+1cL9—" iflg| > n
" 0 iflgl <mn
6. C3=Cpy Vn,geN
7.C=C4+Cl_,=Cy ' +CI_, Vn,g€eN
8 (9)=Ci7 stg>n
9. Y Cl =00t

10. Yp_,Cr=C4,,
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Proof. We will prove selected properties:

1) ¢¢ = 2 = 1: This follows directly from the
definition. There is only one way to choose any group
containing one element, and only one way to choose
any number of elements from an empty set.

3) CL =n Vn € N: This was shown in the base
case of our theorem proof.

4) gCy = nCy: This follows from the symmetry of
the choice combination formula:

g glg+n—-1! nn+g-1)!
9Cn = gln—1! — nl(g—1)! =nCn
5) Cg = Cyr Vn,g € N: This follows from the
symmetry of the choice combination formula:
g (g+n—-1!  (g+n—1)
= = " 2 O

The proofs for the remaining properties follow similar
patterns or can be derived from the main theorem. O

4 POLYNOMIAL STATEMENTS
4.1 Definition

Definition 4.1. Let X = {zi,z2,z3,...,z.} be a
random sample of a nonempty set such that 1 < z; <
xi+1. The polynomial statement, denoted as P, (X) for
X € {z1,x2,...,xn}, iS given by:

Pn C;zn Z C;z;&-lzjct 1

for all ;> 1 andm,-,+1 Z Z;.

@)

4.2 Theorem

Theorem 4.2. Suppose the first term in the group is x
and the common difference (d) in consecutive groups is
1,ie,z,x+1,2+2,...,x+g— 1. Then the polynomial
sequence denoted as P,(x) is given by:

C!J

P() gtz—1

-Gy 3

Proof. We can prove this by induction on g.

Base case: When g = 1, we have:

Pi(x) = 011+171 - 0111_? = C CHT =

This is correct, as there is x way to choose elements z,
only from one group.

Inductive step: Assume the theorem holds for some
k > 1. We will prove it holds for k + 1.

k1 k+1+a
Pyyi(z) = Critqa—1 — Cri1a

1 1
— Okt _ Ck+x+

k+x
(k+ x)! (k+z+1)!
T D)@-10! Kz+1)
(2k + 2)! (2k + z)!

T+ D)ktz—1) (kt+z+D)(k— 1)

This completes the inductive step, proving the theorem
for all positive integers g.
O

Corollary 4.3 (Catalan Numbers). Suppose that the
first term (x) in the above theorem is 1, i.e., 1,2,3,...
Then P, (1) is known as Catalan numbers and denoted
as C,,. Catalan numbers are given by:

n+1

n—1

Cn=0C"— (4)

Proof. We can prove this by induction on n.

Base Case: When n = 1, we have

C,=Cf —City
:CI_CO
=1-0=1

For n = 2, we have
Cy=C3 —C3t!
=C; -}
o (2+2-1)! 3 3.2
G2 = m@—nl_Quf‘zl_g
3 (3+1-1) 3! 3!
=21 S 2 =2
31(1—1)! 300 311
.',02:371:2

Inductive Step: Assume that the statement holds for
n = k. We will prove it forn = k + 1:
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_ k+1 k+1+1

Cry1 = Ck+1 - Ck+1—1
_ k+1 k+2
=i — G

Ok+1_(k+1+k+171)! (2k + 1)!

T R+ DIk+1-1)! T (k+ 1D
Ck+27(k’+2+k_1)!, (2k+1)!
T k+2)Ik—D! — (k+2)(k—1)!

The difference of these terms gives the expected form of Cj1, completing the induction.

5 BINARY POLYNOMIAL STATEMENTS
5.1 Definition

Let the polynomial statement have two sets = and y. Then the binary polynomial statement, denoted as P(z,y),
is given by:

P(z,y) = Cg? - Oj_w sty>«zx (5)
Suppose y = x + A then

P(z,x 4+ \) :Cz+A—C(2w+A),w :I+g(l‘+2)\—1)
2
542N —=x
= 3+A_C§:I+7( 5 )
. 22+ 22N+
2

P(x,x+A)=c§M—c§:W
a)letz=1

P(l,l—l—)\):C’fH—Ci:%(1—1—2)\—&—1)

P(1,1+>\):%(2/\+2):1+>\=C§+1
b) Let z = 2

P(2,2—|—)\):C’22+A—C§:%(24—2/\—&-1)

=C3a—Cr=2+2)+1

P(2,24X) =Ci 1\ — C =342\
c)Letz =3

P(3,3+A):C§H—c§:g(3+2A+1)

=C5a—Cr=B+22+1)
P(3,34+ ) =Ciiy— CX =6+3\
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d)Letz =4
P(4,4+)\) = Ci i\ —Ci = %(4+2A+1)
= Cia—Ci =2(5+2))
P(4,44 X)) =Ci \ —Cr=10+4X
In general

P(z,z+X) =C2, \ —C3=C2 +z\

5.2 Chairux Binary Set Equation
Theorem 5.1 (Chairux Binary Set Equation). For non-negative integers x and X,
C2 .\ =C2+C3+aA (6)

Proof. We can prove this using the explicit formula for C2:

(x+1) +)\()\Jrl)

CiJrCerx)\:x 5 5 + x
22+ + A2+ A+ 22
a 2
(N (=+A+1)
N 2
2
— Y4+
This completes the proof. O

Corollary 5.2. The following special cases of the Chairux Binary Set Equation hold:

1. Ifx =2z, thenC2, = 2C?% + 2
2. Ifx =2z, then C%, = C? + C%, + 222

Proof. These follow directly from substituting the given values of X into Theorem 5.1. O
Theorem 5.3.
C:+Ciy=a (7)

Proof.
equation 1

P(z,z+)\) =C2, \ —C3 =C2+z\
Let

(y=z+A) = A=y—z
Plz,z+y—x) = C’iry,z — Cﬁ,z =C2+ z(y — x)

in general

P(z,y) = C; — Cﬁ_z = Cﬁ + zy — x>
equation 2

P(x,x+ \) =C§+A —Cf — w
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Let
Plz,c+y—2)=Cayy o —Ch .= z(z + 2(y2— z)+1)
Plzy)=C2—C2_, = M
Letz =1
12y —1+1
P(l,y):CS—Ojﬂ:%:y
Letz =2
PRy) =02~ o, = 2B 2E D gy
32y —3+1
P(S,y):C§—c§_3:%: -
Letx =4
42y —4+1
Py =2 -0, =TT gy
In general

P(I,’y) = Cj - 0571 =Y — szl
using equation 1 and 2 we have:
Pz,y)=Cy—Ci_,=Citay—a"=ay—Ci_,
SO tay—a=ay—CF

in general
Ci+Ci =2’

6 CHAIRUX CHOICE COMBINATION

Let X represent a set of chosen elements, and ¢ denote the quantity of elements selected from this set. The
Chairux specific choice, denoted as X,(n,g), represents the number of distinct subsets containing exactly ¢
elements that share at least one element with every subset in X. Chairux specific choice is given by

Xq(n,g) = Cg~"Cq™"
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6.1 Definition

Given a set of elements X and a positive integer ¢, the Chairux general choice, denoted by Cy(n, g), represents
the total number of distinct subsets of size ¢ that can be formed from X.

n—q n—q
Ca(n,g) =D Xqlk,g) = CJ > Ck=cCy
k=0 k=0

The ratio between chairux general combination and specific combination is given as

Rq(n,g) =

g 1s.tg >qg>1
The ratio between the number and the group of elements for combination is given as

n e
R(I(g) = Og—gcg+f78'tq > g >1

6.2 Probability of Choice

The ratio between the general Chairux choice and the choice combination is known as probability of a choice and
given by:

097QC7L7‘1
Pq(n,g) _ CQ(n7 g) _ 4 g+1

cs cy
. e ey
D Pemg) =) gt =1
k=1 k=1 n

6.3 Freedom of Choice

It is derevied from choice combination properties where;

n _n n—1
Ch = gcg =Cyn1

it is given by
fu(n,g) = CﬂCﬁ_k = Cfifﬁciﬂ

change in freedom of a choice is given by;

Afi(n,g) = Cr_y

6.4 Moment of Choice

Mi(n,g) = Ci(n, g) + Xis1(n, g) — Xi(n, g) = Cr_,C{ Y

7 COMPLEMENT OF CHOICE COMBINATION

7.1 Specific Choice Combination

(Xk(n,9))° = Cr(n,g) — Xi(n,g) = CL"Ch_,
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7.2 Unit Move in Specific Choice Combination

Xi+1(n, g)

k k
Cg—ko'n,—k

(Xk41(n,9))° = Cry1(n, g) — Xpt1(n, g) = Cg_xCp "

8 APPLICATIONS AND FUTURE 8.4 Number Theory

DIRECTIONS

The concepts and results presented in this paper have
potential applications in various areas of mathematics
and science:

8.1

Choice combinations can be used to model scenarios
where events can occur multiple times and order
matters, such as in certain sampling problems or in
the analysis of random walks [6]. For example, in
modeling the distribution of particles in a multilevel
system, choice combinations could provide a more
accurate representation than traditional combinatorial
methods.

Probability Theory

8.2 Statistical Mechanics

The formalism of choice combinations may find
applications in the study of systems with multiple energy
levels or in the analysis of particle distributions [12].
For instance, the Chairux Binary Set Equation could
be used to model transitions between energy states in
complex quantum systems, providing a new perspective
on state distributions and transitions.

8.3 Computer Science

The polynomial and binary polynomial statements could
be useful in algorithm design, particularly in areas such
as combinatorial optimization or in the analysis of data
structures. For example:

« In graph theory, these concepts could be applied
to analyze the structure of certain types of trees
or in the development of new graph algorithms.

+ In computational biology, choice combinations
might be used to model complex genetic
sequences or protein folding patterns.

* In machine learning, these combinatorial
structures could potentially be used to develop
new feature selection or dimensionality reduction
techniques.

The Chairux Binary Set Equation and its special cases
might lead to new insights in partition theory or in the
study of additive number theory. For instance:

» The equation could be used to generate new
integer sequences with interesting properties.

+ It might provide a new approach to studying
certain types of Diophantine equations.

+ The polynomial statements could potentially
be applied to problems in analytic number
theory, such as estimating the growth of certain
arithmetic functions.

8.5 Future Research Directions

Based on the results presented in this article, several
promising avenues for future research emerge:

8.5.1 Generalizations of the chairux

binary set equation

One natural extension of this work would be to explore
higher-dimensional generalizations of the chairux
Binary Set Equation. This could involve:

» Developing a ternary or n-ary version of the
equation.

« Investigating how the equation behaves under
different algebraic structures or over different
number systems.

+ Exploring connections between the Chairux
equation and other combinatorial identities, such
as the binomial theorem or Vandermonde’s
identity.

8.5.2 Connections to other combinatorial
structures
Another fruitful area of research could be investigating

connections between choice combinations and other
combinatorial structures, such as:
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* Integer partitions and compositions
« Stirling numbers and Bell numbers
* Young tableaux and symmetric functions
These connections could potentially lead to new

combinatorial identities or provide new perspectives on
existing problems in combinatorics.

8.5.3 Algorithmic aspects

From a computational perspective, it would be valuable
to develop efficient algorithms for:

» Computing and manipulating choice

combinations in large-scale applications

« Generating polynomial and binary polynomial
statements for complex sets

» Solving optimization problems the

framework of choice combinations

using

This could involve techniques from algorithmic
combinatorics, dynamic programming, or even quantum
computing.

8.5.4 Asymptotic behavior

Studying the asymptotic behavior of choice
combinations and related polynomial statements could
provide insights into their long-term behavior and
scaling properties. This could involve:

* Deriving asymptotic formulas for CJ as n or g
approach infinity

« Investigating the limit behavior of polynomial and
binary polynomial statements

» Exploring connections to analytic combinatorics
and generating functions

9 CONCLUSION

In this paper, we have introduced and explored the
concept of choice combination, presenting a new
theorem for its calculation, and examining its properties.
We have also introduced polynomial statements and
binary polynomial statements as methods for selecting
new sets from given choice combinations. These new
methods provide a fresh perspective on combinatorial

problems and have potential applications in various
fields of mathematics and science.

The main contributions of this work include:

1. A rigorous formulation and proof of the choice
combination theorem (thm:main)

2. The introduction of polynomial statements and
their properties (thm:poly)

3. The development of binary polynomial
statements and the derivation of the Chairux
Binary Set Equation (thm:chairux)

4. An exploration of the properties and potential

applications of these new combinatorial
constructs
These results extend our understanding of

combinatorial structures and provide tools for solving
complex combinatorial problems. The introduction of
the parameter X in our binary polynomial statements
opens up new avenues for research, allowing for
more flexible combinatorial structures and potentially
leading to interesting connections with other areas of
mathematics, such as number theory and algebraic
combinatorics.

As combinatorial mathematics continues to find
applications in diverse fields, from theoretical physics
to computer science, the methods and concepts
introduced in this paper may provide valuable tools
for researchers and practitioners alike. The future
research directions outlined in sec:applications suggest
that this work could serve as a foundation for
further advancements in combinatorial theory and its
applications.

In conclusion, this paper represents a significant
step forward in our understanding of combinatorial
structures, providing both theoretical insights and
practical tools for tackling complex problems in
mathematics and related fields. As we continue to
explore the implications and applications of choice
combinations, polynomial statements, and the Chairux
Binary Set Equation, we anticipate that these concepts
will play an increasingly important role in advancing our
understanding of discrete mathematics and its myriad
applications.
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