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ABSTRACT

Present work investigates the effect on heat conduction due to the
intrusion in a homogeneous bulk and proposes models to detect its
position from the temperature distribution on the surface. Finite
volume-based, automated numerical simulations are performed for
obtaining the temperature history along/across the bulk surface
having different positions of the intrusion. Two approaches are
developed to predict the intrusion-position from temperature
data. In approach 1, a multi-layer feed-forward neural network
(NN) with back-propagation (BP) algorithm is used, whereas the
NN parameters are determined through a thorough sequential
parametric study. In approach 2, again a NN with BP algorithm is
used, but a global evolutionary optimizer, namely genetic algo-
rithm (GA) is employed to optimize the NN parameters. NN with BP
algorithm and GA are indigenously developed using ‘C’ program-
ming language in ‘linux’ operating system. NN and GA are indigen-
ously combined in a common monolithic platform using some
specially designed system commands so that data transfer take
place seamlessly in a fully automated way. The performances of the
developed approaches are tested and validated in several ways.
After comparison, approach 2 is found to have higher prediction
capability.

Introduction and Literature Review

Heat conduction in non-homogeneous media like composite, multi-layered, ani-
sotropic, reinforced materials or homogeneous bulk material with intrusion of
other material are quite common in applications related to engineering and
science. Successful design of device involving non-homogeneous media requires
thorough understanding of energy transport considering two- or three-
dimensional features. Spatial distribution of thermo-physical properties makes
the prediction more challenging. Researchers tried to investigate the issue of
handling two- or three-dimensional heat transfer using special treatments.
A generalized fundamental solution for the problems of steady-state heat
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conduction with arbitrarily spatially varying thermal conductivity have been
derived by Kassab and Divo (1996) using boundary element methods (BEM).
The heat conduction across the interface between a thin isotropic thermal barrier
coating and an anisotropic substrate has been analyzed by Shiah and Shi (2006b)
using BEM. More recently, Ang and Clements (2010) have proposed BEM for
thermally anisotropic solids with material properties that vary with temperature
and spatial coordinates. Dual-reciprocity BEM has been presented by Ang and
Clements (2010) and Yun and Ang (2010) for heat conduction in non-
homogeneous materials. For axisymmetric steady-state problem of heat conduc-
tion in non-homogeneous isotropic solid, a complex variable BEM have been
proposed by Ang and Yun (2011). A meshless method based on the integral form
of energy equation has been proposed by Ahmadi et al. (2010) to study the steady-
state heat conduction in anisotropic and heterogeneous materials.

Anisotropic materials have been extensively used in various engineering appli-
cations. Composites are often constructed by combining two or more anisotropic
materials for various objectives. But, due to the mismatch of thermal properties
between contiguous materials, thermal cracking may occur along interfaces.
Therefore, this type of thermal cracking is one of the most crucial concerns in
the use of such composites. Again, during manufacturing through casting or any
other process, intrusion of any secondary material may be occurred within the
homogeneous bulk of the main material. Under thermal loadings, these manu-
facturing defects may even propagate and eventually cause failure of components.
The study on thermal conduction across those defective components plays
a crucial role to provide accurate assessment of possible damaging or cracking
due to the defect. Another example in engineering practice is observed in the case
of thermal barrier coatings. Plasma-sprayed coatings are made by successive
accumulation of partially molten droplets spreading on the substrate surface and
forming thin lamellae upon solidification. Due to the presence of pores, oxides, and
un-melted particles at the interface between the lamellae the thermal contacts are
not perfect (Khor and Gu 2000). Some researches (Itou 2004; Shiah and Shi 2006a)
have been conducted in order to get insight into the heat conduction across
interface cracks/defects.

Thermography (Ng 2009) is a very effective tool for early estimation of the
tumor location. It is a quick and economic imaging approach to detect the
temperature variation on the human skin surface. Methodology required (using
thermal imaging) to detect the tumor location in human body resembles the
technique required to estimate the intrusion location in homogeneous bulk.
Thermography is widely used in the medical arena for the estimation of tumor
location and parameters (Agnelli, Barrea, and Turner 2011; Ng 2009; Song et al.
2007). Numerical modeling of heat transfer within a woman breast is being an
attractive tool that may reveal the conditions under which tumors can be detected
in a thermogram. The transmission line matrix (TLM) has been used by Amri,
Saidane, and Pulko (2011) to model a regular three-dimensional breast with
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embedded tumor and to analyze the sensitivity parameters. However, to make
a proper diagnosis, thermograms alone will not be sufficient. To analyze the
thermogram objectively, analytical tools like statistical methods (Ng and Kee
2008) and artificial intelligence (Tan et al. 2007) are recommended to be incorpo-
rated. For better diagnosis about the location of tumor, concurrent use of thermo-
graphy and artificial neural network (NN) (Ng and Fok 2003) or confluence of
thermogram and fuzzy NN (Tan et al. 2007) or conjunction of thermogram and
radial basis function network (RBEN) (Ng and Kee 2008) are suggested.

It is clear from the literature survey that intrusion in a homogeneous bulk are
frequently encountered in several situations. However, not much work has been
reported on inspection of heterogeneity using the artificial intelligence. The present
work investigates the effect on heat conduction due to the intrusion in
a homogeneous bulk using artificial intelligence. The temperature variation on
the surface of the bulk are used to detect the position of the intrusion. Models using
artificial intelligence are proposed to predict the position of the intrusion (within
the bulk) by knowing the temperature distribution on the bulk-surface. The basic
goal is to correlate the temperature distribution on the surface with the position of
the intrusion. The developed methodology may also be used for the estimation of
tumor location and parameter.

Problem Formulations

Figure 1 shows the test problem consisting of a square steel slab with a copper
intrusion of circular shape. Each of the sides of the square slab (represented by a) is
considered as 1.0 m. The radius of the circular intrusion is denoted by r. The
intrusion can take any position within the square b (each of the sides of the square
bis 0.96 m) on the slab. Positions of the intrusion within the slab are measured with
respect to a 2D Cartesian coordinate system with its origin at the center of the slab,
whereas positive abscissa and ordinate are chosen along horizontal-right and
vertical-top directions, respectively. Constant heat flux is maintained at the bottom
wall of the slab whereas constant temperature is specified at all the remaining
edges.

For a given physical properties of the slab and intrusion location, with specified
boundary conditions at the slab-edges, forward heat transfer problem is formu-
lated as to find out the temperature distribution along the bottom wall by 2D heat
conduction analysis. The reverse problem is framed as to predict (estimate) the
intrusion location (center of the intrusion) by knowing the temperature profile at
the bottom wall of the slab.

Solution Strategy

Attempt is made to develop methodologies to predict the intrusion location
within a homogeneous bulk by knowing the temperature distribution on the
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Square
Circular copper steel slab

intrusion

Figure 1. The schematic representation of the square steel slab with a circular copper intrusion
(all dimensions are in meter).

surface. Present section deals with the detail indigenous strategies and pro-
cedure of the methodology development.

Data Collection

Due to conduction, heat propagates from bottom wall toward upward direc-
tion. By numerical simulation of heat conduction, temperature distributions
in the whole slab can be extracted for different positions of the intrusion
within the slab with given physical properties and specified boundary con-
ditions. For each distinct position of the intrusion (Figure 1), there will be
a specific temperature profile at the bottom wall. For an intrusion-position,
the x, y coordinates of the intrusion-center and the corresponding tempera-
ture profile at the bottom wall constitute one complete data. The temperature
profile is recorded in terms of temperatures at 11 different positions (in
a regular interval) along the bottom wall. For 841 different positions of the
intrusion within the slab, data are collected in the same way. This may be
called the forward problem. Two different sets of data are collected: one is
called training data another is called test data. The training data are used to
develop methodologies (through training) and the test data are used to check
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the prediction capability of the developed methodologies. To evaluate all data
by forward calculations, Finite volume-based automated numerical simula-
tions are performed (using ‘C’ programming language and commercial CFD
software: Fluent) as shown in Figure 2. For a position of the intrusion, at
first, the problem is modeled, discretized and information is embedded in
a mesh file. Now, the 2D heat conduction problem is solved using finite
volume-based numerical calculation by taking the mesh file as input and
consequently, the temperature profile at bottom wall is achieved. The process
will be uninterruptedly repeated until the data set for all the positions of the
intrusion within the slab are collected. It is very difficult and exhaustive to do
it manually. To obtain the complete data without any human interface,
a code is developed using ‘C’ programming language, where the modeling
with meshing operation and the numerical calculation are performed con-
secutively. Individual journal file are constructed for meshing and numerical
calculation to collect the input-output data seamlessly without delay. The
algorithm for amalgamation of the subsequent operations (modeling with
meshing, numerical calculations, and data write-up) with their respective
journal file are described in Figure 2. Amalgamation and data write-up are
done using ‘C’ programming language with some specially designed system
commands.

Adopted Numerical Scheme

One needs to solve the energy conservation equation to find temperature
profile at the bottom wall corresponding to each position of the intrusion. 2D
steady-state heat conduction with spatial variation of heat conductivity
(conductivity of the bulk and intrusion are different) and without heat

Written data > Maximum

Calculation of intrusion center in terms off
numbers of data

x, y coordinates
L7
Record temperatures at some specified Record the x, y coordinates of the

positions along the bottom wall in a file intrusion center in a file
A L7
Modification of Journal file for modelling
& meshing with new information
Y
Modelling and meshing operation as

described in corresponding journal file
Y

Export the bottom wall temperatures
profile
A

Solution of 2D steady state heat

conduction problem
K

Numerical calculation with mesh file as
mentioned in corresponding Journal file|

Creation of mesh file with modelling and

meshing information

Figure 2. Schematic representation of data collection.
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generation is considered. Simplified form of the governing equation consid-
ered for the present study is shown below.

LY AL PN

The left, top and right boundaries of the square slab (Figure 1) are kept at
a constant temperature. But at the bottom edge, a constant heat flux is
maintained.

At left, top and right wall, T(x, y) = Constant specified value  (2)

At bottom wall, (—k(x, ¥) %ﬁ;)})) = Constant specified value  (3)
A body fitted triangular grid arrangement (as shown in Figure 3) is
employed. The grid size is decided after conducting a rigorous grid indepen-
dence test (details are provided in the ‘Results and Discussion’ section).
Conservation equation for temperature T at a cell g after discretization can
be written as

a,Ty = awTo +b (4)
nb

In this equation, a, is the center coefficient, a,, are the influence coefficients
for the neighboring cells, and b is the contribution of the constant part of the

Figure 3. A schematic representation of the grids for a particular position of the intrusion.
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source term S, in § = S, + S,T and of the boundary conditions. In
Equation (4),

a; = Zanb - $ (5)
nb

The imbalance in Equation (4) summed over all the computational cells g is
denoted by the residual R" which is computed by pressure-based solver as

R'="1> awlw+b—aT, (6)

cells g | nb

This is referred to as the ‘unscaled’ residual. It is difficult to judge conver-
gence by examining the residuals defined by Equation (6), since no scaling is
employed. A scaling factor (representative of the heat flow rate through the
domain) is used to scale the residual. This ‘scaled’ energy residual is
defined as

%: Xb: any Top + b —a,T,
RT _cellsgln )
> |ag Tyl

cells g

The scaled residual is a more appropriate indicator of convergence. Here, the
scaled residuals are computed at each iteration. Once all these scaled resi-
duals fall below a prescribed value, it is assumed that convergence is reached.
In this study, a fixed value of 2 x 10~® for the scaled energy residual is chosen
as the prescribed value of convergence. The plot of scaled residual with
number of iterations is shown in Figure 4.

3.922E-5 T T T T

3.502E-5 | &

3.002E-5 | b

2.502E-5 | A

2.002E-5 E

1.502E-5 J

Scaled Energy Residual

1.002E-5 h

5.020E-6 i

—

2.000E-8 1 1 1 1 1 1 1 1

0 100 200 300 400 500 600 700 800 900
Tteration

Figure 4. Plot of scaled energy residuals with iteration number.
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Reverse Problem (Prediction Methodology)

To predict the position of the intrusion, computational codes are developed
(using ‘C’ programming language) adopting two different approaches: first
one is based on the feed-forward NN with parametric study and second one
is based on the GA-tuned feed-forward NN. In both cases, connecting
weights are optimized through back-propagation (BP) algorithm. The pro-
blem here is to predict the position of the intrusion within the slab by
knowing the temperature profile at the bottom wall of the slab.
Temperature profile is collected in terms of temperatures at 11 specified
positions (in a regular interval) along the bottom wall. These 11 temperatures
are the inputs of the NN, and x and y coordinates of the intrusion-center are
considered as the outputs of the network. Therefore, the network has 11
neurons for 11 inputs in the input layer and two neurons for two outputs in
the output layer (Figure 5). Only one hidden layer is considered here. The
neurons of input layer are assumed to have linear transfer function, whereas
neurons of hidden and output layers have tan-sigmoid transfer functions.
To update and to obtain the optimized weights of the network (which can
predict the outputs with the minimum deviation) BP algorithm (Ghosh et al.
2012) is utilized. Besides the connecting weights, the performance of the NN
depends on some other parameters, namely learning rate (), momentum
factor («), slope of linear transfer function of input layer (a;), transfer
function coefficients of the hidden (ay) and output (ap) layers and number
of neurons in the hidden layer (Ny). To predict the position of the intrusion

Inputs
Outputs

Figure 5. Schematic representation of the adopted multi-layer feed-forward NN.
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more accurately, these parameters have to be optimized. To do this, two
different approaches have been followed, as explained below.

Approach 1: A Thorough Parametric Study

In this approach, an attempt is made to optimize the said parameters (, a,
ar, ag, and Ny) through a parametric study. Here, only one parameter is
varied at a time keeping the others fixed. Value of the parameter for which
the percentage deviation in predictions comes out to be the minimum is
selected as the optimum value of the same. Other parameters are optimized
one after another in steps in the same way. Thus, in the present approach,
optimal values of NN parameters are selected in stages. Computational codes
are developed for NN using ‘C’ programming language.

Approach 2: A Combined GA-NN

Here, a GA (Ghosh et al. 2013) is used to optimize the NN parameters,
namely #, «, aj, ay, ap and Ny. The GA starts with a randomly generated
population of possible solutions (i.e., different set of the NN parameters).
Members of the population are called GA-string (chromosome), which
carries the information of those NN parameters (a;, an, ao, &, #, Np), used
to form the network. NN parameters are coded in the GA-string using binary
coding. The field size for each of the variables is chosen as 14. As there are six
variables, the total length of a chromosome becomes equal to 84. Thus,
a representative GA-string looks like as follows:

a ay ao a n Ny
01101111110000 01011001100011 00001110110110 01101111110100 00101010111011 11000111111110

The first 14 bits, that is, 01101111110000 yield the decoded value (DV) as 0
x2P 11 x22 4+ 12 4 0x210 + 1 x27 + 1 x22 4 1 x27 +1x2°+1x2° + 1
x2% + 0 %2 + 0 x22 + 0 x2' + 0 x2° = 7152. The real value of a;is determined
following the linear mapping rule as given below.

] max — @I min
aI - aI,min + Zﬁeldsize _ 1 X DV (8)

The real values of other variables are calculated following the similar proce-
dure. After determining the real values of the parameters from the GA-string
the NN is formed. Once the network is formed, a BP algorithm is activated to
optimize the weights of the network, so that it can predict the outputs with
minimum error. After updating the weights, percentage error/deviation in
prediction is calculated and assigned as the fitness value of the corresponding
string. The fitness values of all the other members of the population are
calculated in the same way. The population become enriched by using the
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‘reproduction’ (to select the better solutions from the present population pool
for the next operations), ‘crossover’ (to exchange properties between two
parents’ chromosomes) and ‘mutation’ (to introduce diversity in the solution
space and to avoid convergence in the local optima) operators in each
generation. A large number of generations are used to get the optimum
globally enriched solutions. “Tournament selection’ scheme is used as the
‘reproduction operator’ and ‘uniform crossover’ is utilized as the ‘crossover’
operator in the present study. Figure 6 shows the schematic representation of
the hybrid GA-tuned NN approach. Computational codes are developed for
GA, NN as well as for the hybridization between NN and GA using ‘C’
programming language.

Results and Discussion

At first, detail about the grid independence test is provided. Then results
obtained through the developed approaches to predict the intrusion location
(center of the intrusion) within the slab are presented and discussed.

\|—| Generation = 0

Generation > Maximum Generation?

A

Evaluation of NN parameters from GA-string

v

Formation of NN

Y

Reproduction through ‘Tournament
selection’ scheme
l Start BP algorithm
‘Uniform crossover’ as Crossover T
l Calculation of % error in prediction
Mutation v
l Assignment of this error as fitness value of the
Generation = Generation + 1 cormespondling siring
v
String Number = String Number + 1
v

Figure 6. A schematic showing the proposed GA-tuned NN methodology (approach 2).
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Grid Independence Test

A triangular mesh is considered for the forward problem. The size of the grid
is varied keeping the other parameters fixed. Mesh file is generated corre-
sponding to each of the value of grid size, and then temperature profile at the
bottom wall is evaluated through numerical simulation (as described above)
corresponding to each of these mesh files. Temperature profile at bottom
wall is plotted for each of the grid size as shown in Figure 7. The maximum
temperature at the bottom wall is evaluated corresponding to each of the grid
size. A plot is made between the maximum temperature (at bottom wall) and
the corresponding grid size (as shown in Figure 8) to capture the variation of
maximum temperature (at bottom wall) with grid size. There is a range of
grid size, in which no significant changes are found in the temperature
profiles (in Figure 7) or in the maximum temperature in the bottom wall
(in Figure 8). Then, a value of grid size lying within this range is chosen as
the grid size during meshing for data generation (Training and Test data).
During grid independent test, intrusion-center is placed at the center of the
slab (point [0, 0] with respect to the coordinate system as described in the
‘Problem Formulations’ section) and radius of the intrusion is considered as
0.2 m. Through the grid independent test, the grid size is selected as 0.01 m
for the rest of the study.

Prediction of the Intrusion-Position

The radius of the circular copper intrusion is considered as 0.2 m, and the
data are collected by varying the position of the circular intrusion throughout

1500 T T T T T T T —0.002

0.005
7 | ——0.010
0.020
] 0.015
0.025
0.030
——0.035
——0.040
- 0.045
——0.050
——0.055
0.060
0.065

600 0.070
/) \ 0.075

450 / 0.080
0.085

0.090
0.095
——0.100

1350 -

1200 -

1050 [

Bottom wall temperature
profile for different
grid size in meter.
Grid size have been varried

from 0.002 m to 0.10 m
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(=]
T

300 1 1 1 1 | 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
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Figure 7. Temperature profile at the bottom wall of the square slab for different grid sizes
(center of the intrusion is placed at the center of the slab; r = 0.2 m).
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Figure 8. Variations of maximum temperature at bottom wall with grid size (position of the
center of the intrusion is chosen at the center of the slab; radius of the intrusion is 0.2 m).

the square slab. Data are collected for 841 different positions of the intrusion.
The temperature profiles at the bottom wall for seven different positions of
the intrusion are shown in Figure 9. It is clear from Figure 9 that the
temperature profiles at the bottom wall are very much responsive to the
intrusion-position within the bulk. Therefore, it is possible to estimate or
predict the intrusion-position by knowing the temperature profile at the
bottom wall of the slab.

Prediction of Intrusion-Position Using Approach 1
In approach 1, optimum values of the NN parameters, namely learning rate
(), momentum factor («), slope of linear transfer function in input layer

1600 T T T T T T T T T

1400 - u
1200 - QO b
o
2
2
£ 1000 i
(=%
5
[
300 - —5—(0.00,0.28) A
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Position along the bottom wall (m)

Figure 9. Temperature profiles at the bottom wall of the square slab for seven different positions
of the circular intrusion with radius 0.2 m.
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(ar), transfer function coefficient of the hidden (ay) and output layer (ap)
and number of neurons in the hidden layer (Ny) are optimized in stages.
One parameter is varied at a time from its minimum possible value to
maximum allowable value keeping other parameters fixed to decide the
optimal value of that particular parameter. Value of the parameter for
which percentage error in prediction becomes minimum is selected as the
optimum one. The percentage error in prediction is defined as

yf {1213 (!ToZk - ooZk|) H
Z4i+ | K k=1 Tou
x 100.0, 9

Percentage Error in Prediction =

where, Z represents the numbers of training/test scenarios and K denotes the
number of outputs. T, indicates the target output for the k-th output neuron
corresponding to z-th scenario and Og, denotes the network predicted value of
the same. Once one parameter is optimized, it is kept fixed for the rest of the
parametric study. To determine optimal values of the other parameters, similar
studies are carried out. During optimization of Ny using parametric study, allow-
able maximum value of Ny is decided as explained below. There are 11 input
neurons and 2 output neurons in the input and output layers of the NN, respec-
tively. If the value of Ny is x, then the total number of connecting weights in the
network becomes equal to (11x + 2x). Therefore, (11x + 2x) should be either less
than or equal to the number of training scenarios (Z), i.e., (11x + 2x) < Zor x < (Z/
13). The number of training scenarios, Z, means, Z number of input-output data
are used during training to update and optimize the weights. Therefore, the range
of search for Ny becomes 0 < Ny < (Z/13). However, the number of neuron cannot
be a fraction. The parametric study for learning rate (#) is shown in Figure 10. This
figure shows the variation of percentage error in prediction with learning rate
(keeping other parameters fixed) using the training and test data. The lowest value
of the percentage error in prediction is found at # = 0.8. Therefore, the optimum
value of learning rate is considered as 0.8. For the others, parametric studies are
performed in the same way. The optimum values of the NN parameters obtained
through parametric study are as follows: 7 = 0.8, « = 0.47, a;= 1.1, ag = 1.0, ap =
0.97 and Ny = 11.

The performance of the optimized NN (using parametric study and BP algo-
rithm) is tested with the help of test data. The average test error in prediction is
found as 18.95%. The distributions of test error in prediction along the line x = 0.0,
obtained using approach 1, are shown in Figure 11. In this figure, center of each
circle denotes the exact position of the intrusion-center and the radius of the circle
represents the prediction error around that position. The radius of the circle is
calculated as
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Figure 11. Distribution of test errors in prediction along the line x = 0 using approach 1.

Radius = \/(xe — xp)2 + ( . —yp)z, (10)

where (x,, y.) indicates the coordinate of the exact position of the intrusion-
center and (x,,,) represents the coordinate of the predicted position of the
intrusion-center. Therefore, the radius of error circle becomes zero, if the
predicted position perfectly matches with the exact position.

The predicted positions of the intrusion using approach 1 are validated
or tested by performing numerical simulations of the forward problem
considering intrusion at the predicted position. Validations/tests are made
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by comparing the bottom-wall temperature profile when intrusion is in
the exact position with that when intrusion is in the predicted position.
Figure 12 shows these comparisons at six different locations along the line
x = 0.0. For each case, red curve represents the temperature profile with
original position of the intrusion and black curve indicates the tempera-
ture profile with the predicted position of the intrusion. In each case, the
original position of the intrusion is mentioned in Figure 12. For a better
realization, temperatures along bottom wall with predicted position of the
intrusion are plotted against that with actual position of the intrusion.
These plots are shown in Figure 13 for six different locations along the
line x = 0.0. Here the plots are made by considering wall temperatures
with actual position along the axis of abscissas (horizontal axis) and wall
temperatures with predicted position along the axis of ordinates (vertical
axis). Deviations of the predicted position from the original position can
be judged by the distance of the plotted points from the line with slope 1
(tan 45°). Points situated on the line with slope 1, represent the perfect
matching between the predicted and original positions of the intrusion.
Validation in terms of comparisons between the temperature contours
with original and predicted (using approach 1) position of the intrusion
are shown in Figure 14.

Prediction of Intrusion-Position Using Approach 2
Here, the optimum set of NN parameters are obtained using GA. Figure 15
shows the variation of the best GA-fitness value (% error in prediction)
with the numbers of generations during GA-run. It is important to note
that after 23 generations, there is no change in the value of the best GA-
titness value. This study confirms the convergence of the GA-search. After
using the optimum set of NN parameters obtained through GA, the varia-
tion of percentage error in prediction with the number of iterations during
training using BP algorithm for weights updation/optimization is shown in
Figure 16. The performance of the optimized NN (using GA and BP
algorithm) is tested with the help of test data. The obtained percentage
errors in prediction using approach 2 in different regions of the bulk are
shown in Table 1. The distributions of the test errors in prediction using
approach 2 in different regions of the bulk are shown in Figure 17. As
described in the previous sub-section (using Equation 10), the center of
each circle denotes the exact position of the center of the intrusion and the
radius of that represents the error in prediction around that position. From
Figure 17, it is generally observed that the intrusion-positions in the lower
half of the bulk are more accurately predicted compare to that in the upper
half.

The predicted positions of the intrusion using approach 2 are also vali-
dated or tested (just like using approach 1) by performing numerical
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Figure 12. Validations by comparing the bottom-wall temperature profile when intrusion is in

the exact position with that when intrusion is in the predicted (using approach 1) position.

simulations of the forward problem considering intrusion at the predicted
position. At first, predicted positions are validated/tested along the line
x = —0.28 by making comparisons between the bottom-wall temperature
profiles with actual and predicted (using approach 2) positions of the intru-
sion as shown in Figure 18. Validation/test along the line x = —0.14 are made
by making plots between the bottom-wall temperatures with actual and
predicted (by approach 2) position of the intrusion where temperatures for
actual position are considered along the axis of abscissas and temperatures
for predicted positions are considered along the axis of ordinates. These plots
are shown in Figure 19. Validated and tested results in terms of comparisons
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Figure 14. Validation/test in terms of comparison between the temperature contours with exact
and predicted (through approach 1) position of the intrusion (along x = 0.0).

between the temperature contours with actual and predicted position of the
intrusion along the line x = —0.06 are shown in Figure 20. To validate/test the
results along the line x = 0, plots are made by considering temperatures of
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Table 1. Test errors in prediction (%) for different regions of the bulk using approach 2.

Case

Average test error in prediction (%)

Intrusion
Intrusion
Intrusion
Intrusion
Intrusion
Intrusion
Intrusion

moves along x = —0.28
moves along x = —0.14
moves along x = —0.06
moves along x = 0.00
moves along x = 0.06
moves along x = 0.14
moves along x = 0.28

16.22
18.81
13.25
13.67
11.70
15.67
18.17
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Figure 18. Validation/test in terms of comparisons between the temperature profiles at bottom
wall with exact and predicted (through approach 2) position of the intrusion (along x = —0.28).

bottom wall along the axis of abscissas for actual positions and along the axis
of ordinates for predicted positions of the intrusion as shown in Figure 21.
As validation/test (using approach 2) along line, x = 0.06, Figure 22 shows
the comparisons between the temperature profiles at bottom wall with actual
and predicted positions of the intrusion. To validate/test the results, tem-
perature contours for actual positions of intrusion are compared with that for
predicted positions of the intrusion along the line x = 0.1, as shown in Figure
23. Along x = 0.28, validated/tested results in terms of comparisons between
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Figure 19. Validation/test in terms of plots between the temperatures along bottom wall with
predicted (using approach 2) and exact position of the intrusion (along x = -0.14).
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Figure 20. Validation/test in terms of comparison between the temperature contours with exact
and predicted (through approach 2) position of the intrusion (along x = —0.06).

the temperature profiles at bottom wall for actual and predicted (using
approach 2) positions of the intrusion are shown in Figure 24.
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Figure 21. Validation/test in terms of plots between the temperatures along bottom wall with
predicted (using approach 2) and exact position of the intrusion (along x = 0.0).




APPLIED ARTIFICIAL INTELLIGENCE . 149

1400 - 1400 - 1
1200 - 1200 -
g g
1 =
2 1000 - £ 1000 -
g g Position of Intrusion (0.06, 0.13)
= o
g g
O o
=800 =800
Original
Position of Intrusion (0.06, 0.27) Predicted
600 - 600 [
Orignal
Predicted
400 L . ' 400 L ; :
-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
(a) Dimension along the bottom wall of the slab (m) (b) Dimension along the bottom wall of the slab (m)
1400 1400
1200 - 1200
g g
2 g
£ 1000 [ £ 1000 [
3 8
{=% o
g ]
o o
=800 - = 800
Position of Intrusion (0.06, 0.05) Position of Intrusion (0.06, -0.05)
600 - A 600 [ =
—Orignal Orignal
Predicted Predicted
400 y . + 400 : . -
-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
(C) Dimension along the bottom wall of the slab (m) (d) Dimension along the bottom wall of the slab (m)
1400 - b 1400 -
Position of the Intrusion (0.06, -0.27)
1200 | 1200
g g
g 1000 E 1000
£ g
S 3
=800 - =800 — b
Original
Position of Intrusion (0.06, -0.13) Predicted
600 - 1 600 [
Orignal
Predicted
400 L L L 400 : L .
-0.5 -0.25 0 0.25 0.5 -0.5 -0.25 0 0.25 0.5
(e) Dimension along the bottom wall of the slab (m) (f) Dimension along the bottom wall of the slab (m)

Figure 22. Validation/test in terms of comparisons between the temperature profiles at bottom
wall with exact and predicted (using approach 2) positions of the intrusion (along x = 0.06).

By analyzing Figures 17-24, it is found that the bottom-wall temperature
profile is very sensitive to the intrusion-position and this sensitivity increases as
it (intrusion) moves toward (become closer to the) bottom wall. As a result, for
a very long distance of the intrusion from bottom wall, very similar bottom-wall
temperature profiles (for the predicted and original position) may be obtained
even though the deflection of predicted position from the original position is
large. Again, when the intrusion is very close to the bottom wall, large deviation
between the bottom-wall temperature profiles (with predicted and original
position of intrusion) may be found even though the predicted position is very
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Figure 23. Validation/test in terms of comparisons between the temperature contours with
actual and predicted (using approach 2) positions of the intrusion (along x = 0.14).

close to the original position. These two findings are clearly visible if one
compare Figures 17(a) and 18 or Figures 17(b) and 19 or Figures 17(e) and 22
or Figures 17(g) and 24, separately. From Figures 20 and 23, again it is found that
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Figure 24. Validation/test in terms of comparisons between the temperature profiles at bottom
wall with actual and predicted (using approach 2) positions of the intrusion (along x = 0.28).

deviation between the original and predicted position of intrusion (in terms of
temperature contour) is more in the upper half of the slab compare to the lower
half.

Concluding Remarks

Methodologies have been developed to inspect the heterogeneity in
a homogeneous bulk using numerical analysis of 2D heat conduction and
indigenously bred hybrid computational intelligence. Problem is defined as
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to predict the location of a circular intrusion of other material within
a square homogenous bulk from some known temperature profile collected
at the bottom surface of the bulk. The data (temperature history along
bottom surface of the bulk for different positions of the intrusion) have
been numerically evaluated by the forward calculations using commercial
CFD software (Fluent) in a fully automated way by indigenously developed
algorithm using ‘C’ programming language. Two approaches have been
developed using multi-layer feed-forward NN with BP algorithm to solve
the reverse (prediction) problem. In approach 1, the NN parameters have
been optimized through a thorough parametric study by varying them one
after another in stages. In approach 2, the NN parameters have been opti-
mized simultaneously by utilizing one global optimizer namely GA. NN
parameters together with the connecting weights involves a large number
of variables, a GA alone may not be sufficient to optimize them together due
to its inherent permutation problem. Realizing this fact, the task of updating
the connecting weights of NN has been given to a local optimizer like BP
algorithm. The performances of the developed approaches to predict the
intrusion-position have been tested and validated in multiple way.

Temperature profile at the bottom surface has been found very sensitive to
the intrusion-position within the bulk and this sensitivity increases as it
become closer to the bottom surface. As a result, intrusion-position can be
predicted more accurately when lies in the lower half of the bulk compare to
that in the upper half. When intrusion is very far from the bottom surface,
almost identical bottom-wall temperature profiles (for the predicted and
original position) may be found even for a large deflection of the predicted
position from the original position. Again, for a very close position of the
intrusion (from bottom surface), large diversion between the bottom-wall
temperature profiles (with predicted and original position of intrusion) may
be obtained even for a very small deviation of the predicted position from the
original position.

Comparisons between the performances of approaches 1 and 2 reveal that
approach 2 performs in better way to predict the intrusion-position within
the bulk. It is found so due to the fact that in approach 1, appropriate values
of NN parameters are determined in stages, whereas in approach 2, the said
NN parameters are optimized concurrently using one global optimizer
namely GA. In this approach, global search capability of the GA is coupled
with the local search power of BP algorithm. Thus, a hybrid optimization
scheme is implemented in approach 2 and consequently, it performs in better
way compare to the other. This proposal is found to be a reasonably efficient
tool for prediction in heat conduction problems.

The shape and size of the intrusion were kept fixed during development of
the methodologies for prediction. Therefore, they can estimate the location of
intrusion only. By varying the shape and size of the intrusion, the
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methodology can be modified further to estimate the shape and size of the
intrusion or can be extended further to estimate the position together with
the shape and size of intrusion. Proposed hybrid approach can be modified
and extended further to solve other prediction problems in conduction or in
another mode of heat transfer.
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