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ABSTRACT

De-identification of electronic health records (EHR) is a vital step
toward advancing health informatics research and maximizing
the use of available data. It is a two-step process where step one is
the identification of protected health information (PHI), and step
two is replacing such PHI with surrogates. Despite the recent
advances in automatic de-identification of EHR, significant obsta-
cles remain if the abundant health data available are to be used
to the full potential. Accuracy in de-identification could be con-
sidered a necessary, but not sufficient condition for the use of
EHR without individual patient consent. We present here
a comprehensive review of the progress to date, both the
impressive successes in achieving high accuracy and the signifi-
cant risks and challenges that remain. To best of our knowledge,
this is the first paper to present a complete picture of end-to-end
automatic de-identification. We review 18 recently published
automatic de-identification systems -designed to de-identify
EHR in the form of free text- to show the advancements made
in improving the overall accuracy of the system, and in identifying
individual PHI. We argue that despite the improvements in accu-
racy there remain challenges in surrogate generation and repla-
cements of identified PHIs, and the risks posed to patient
protection and privacy.

Introduction

The application of machine learning research using EHR has the potential to
revolutionize health care. There is an abundance of health data available and
maximizing the utility of this data will result in improving health care,
especially in patient care, medical outcomes, surgical outcomes, risk predic-
tion, clinical decision support and medical diagnosis.

Use of patient data typically requires individual patient consent. For
research, without individual consent, the data must be de-identified such
that the patient’s identity or privacy is not breached. Obtaining individual
patient consent for massive datasets is time-consuming and is a challenging
task. Hence there is a great interest in automating the de-identification
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process such that EHR can be used in research to improve the health care
and quality of patient care without compromising the identity of the patient.

There is growing interest internationally in applying big data techniques to
electronic health records. However, privacy laws in many jurisdictions —
including New Zealand’s Health Information Privacy Code and the United
States Health Insurance Portability and Accountability Act (HIPAA) -
require accurate de-identification of medical documents (such as discharge
summaries and electronic health records) before they can be shared outside
of their originating institutions.

The sharing of records is crucial for advancing health research. For
example, the 2014 Heart Disease Risk Factors Challenge involved participat-
ing research groups attempting to predict heart disease risk factors in diabetic
patients from longitudinal clinical narratives. As noted above, such
a challenge would not have been possible under United States law if the
narratives (1,304 medical records from 296 diabetic patients) were not de-
identified first. In this case, the records were de-identified manually by
multiple medical professionals. Since most institutions will not be able to
afford the costs of manual de-identification, automating the process is crucial
therefore for sharing data and advancing health research.

We present our findings in three main groups: achievements, challenges,
and risks, associated with generating an automatic de-identification.
Achievements of automatic de-identification primarily focus on identifica-
tion of PHI in EHR. Challenges are associated with the surrogate generation
and replacement. Risks outline the issues relating to re-identification and
medical correctness and usability of de-identified data.

The rest of the paper is structured such that a brief background on de-
identification is presented in Section 2, achievements of recent de-
identification systems in Section 3, challenges in Section 4, risks in Section 5
and finally a discussion in Section 6.

Background on De-ldentification

De-identification is a two-step process where PHI is identified in EHR and
replaced with suitable surrogates such that patient privacy and confidentiality
is not at risk. Figure 1 provides a detailed example of de-identification of
EHR, where original patient discharge notes are de-identified.

This figure also outlines the two-step de-identification process. It is
important to note that step two requires the use of appropriate surrogates
to replace the original PHI and hence automating surrogate generation is
a vital step in creating a longitudinal narrative end-to-end automatic de-
identification system. Although EHR is in the form of tabular structures (i.e.
tables), free-form narratives, and images, this study focuses on medical data
in the free form longitudinal text.
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Patient discharge notes (original)

Date: 06/12/2008
Patient Name: Mrs. Anna Smith
Age: 45 years
Discharge Notes:
Mrs. Anna Smith was presented with chest pain at the Auckland Hospital. She was attended by
Dr. Richards, who requested an ECG scan and some blood works. She was discharged on the
09/12/2008 by Dr. David Roper. Smith works as a bartender at Sky city.

h 4

STEP 1: ldentification of PHI's
For example: <06/12/2008> as <DATE>; <Anna Smith> as <NAME>;
<Auckland Hospital> as <LOCATION>

A 4

STEP 2: Replacing the Identified PHI's with appropriate surragates
For example: <06/12/2008> to <04/10/2028>; <Anna Smith> to <Rose
Benjamin>: <Auckland Hospital> to <South Regional Hospital>

l

Patient discharge notes (de-identified)

Date: 04/10/2028
Patient Name: Mrs. Rose Benjamin
Age: 45 years
Discharge Notes:
Mrs. Rose Benjamin was presented with chest pain at the South Reglonal Hospital. She was
attended by Dr. Samuels, who requested an ECG scan and some blood works. She was
discharged on the 07/10/2028 by Dr. Yuridia Joy. Benjamin works as a walter at Casino bar.

Figure 1. Example of an end-to-end de-identification process.

De-identification should be considered a means of satistying rather than
circumventing the legal and ethical requirements created to protect patient
privacy across the world. Individual countries have different requirements,
for example HIPAA in the United States of America (Garfinkel (2015);
Stubbs et al. (2015a); Yogarajan, Mayo, and Pfahringer (2018b)), the
European Union’s new General Data Protection Regulation (GDPR)
(Brasher (2018); Polonetsky, Tene, and Finch (2016)), and New Zealand’s
own health information privacy code (Health & Disability Commissioner
(2009); Office of the Privacy Commissioner (2013); Yogarajan, Mayo, and
Pfahringer (2018a)). HIPAA is arguably the gold standard, and both
HIPAA'’s regulations on Expert Determination and Safe Harbor are used as
the standard benchmarks for de-identification of EHR in the form of free
text. We use HIPAA’s Safe Harbor guidelines as the basis of assessing the
accuracy of the de-identification systems (for details on HIPAA’s Safe Harbor
and the 18 categories see Yogarajan, Mayo, and Pfahringer (2018b)).
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A superior de-identification system will not only meet legal requirements
but will also help build societal consent by assuring the public that their
privacy and medical data will be protected. This consent is vital if large-scale
research involving medical records is to be accepted in the same way as, for
example, Statistics New Zealand’s Integrated Data Infrastructure. Acceptance
of the latter is arguably in part due to measures were taken by Statistics New
Zealand to de-identify data (Ragupathy and Yogarajan (2018); Statistics New
Zealand (2016)).

Achievements

In the recent years there has been a substantial development in natural
language processing tasks, including de-identification, primarily due to the
development in deep learning (Dalianis (2018); Goldberg (2017)). Improving
accuracy of de-identification of EHR - step 1 from Figure 1 - has been the
primary focus of research in this field, and several de-identification systems
have achieved remarkable success. The main reason for such development is
the EHR de-identification competitions (Kumar et al. (2015); Stubbs,
Filannino, and Uzuner (2017); Stubbs et al. (2015); Stubbs and Uzuner
(2015c¢, 2017); Uzuner and Stubbs (2015)). For a complete review of these
competitions and significance see Yogarajan, Mayo, and Pfahringer (2018b).
It is important to note that these competitions provide open access data
which allowed the research to grow rapidly. In addition to these competition
datasets, the MIMIC dataset (Goldberger et al. (2000); Johnson et al. (2016))
is another open access dataset that has been used to develop de-identification
systems.

In this section, we outline the most significant achievement of automating
end-to-end de-identification system: improving accuracy. It has been argued
that as far as de-identification is concerned, perfection cannot be achieved;
however, 95% accuracy is considered to be the rule of thumb and universally
accepted value (Stubbs, Filannino, and Uzuner (2017); Stubbs, Kotfila, and
Uzuner (2015)). We use 18 de-identification systems, as outlined in Table 1,
to show that several of these systems have achieved an overall F-measure of

> 0.95. Also, we outline the fact that these systems have also identified the

majority of the HIPAA PHI with the F-measure of > 0.95. These achieve-
ments have been a significant milestone in automating end-to-end de-
identification of EHR and has been a significant breakthrough in this area
of research.

This section will be structured such that a brief overview of the datasets
will be provided. This is followed by an outline of the systems that obtained
an overall F-measure of > 0.95, and also a summary of systems that
recorded F-measure of > 0.95 for individual PHIs. The techniques and
datasets used for these results are also outlined.
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Table 1. De-identification systems summary. Machine learning
indicates systems that uses machine learning techniques only.
Hybrid systems indicates systems that used a combination of
machine learning techniques and hand crafted rules.

Architecture De-identification system

Zhao et al. (2018)),
Chen, Cullen, and Godwin (2015))
Dernoncourt et al. (2017)),
Yadav et al. (2017)),
Lee, Dernoncourt, and Szolovits (2018)),
Dernoncourt, Lee, and Szolovits (2017))
Hybrid S7 (Yang and Garibaldi (2015))

S8 (Liu et al. (2017))

S9 (Lee et al. (2016))

S10 (Dehghan et al. (2015))

S11 (Yang and Garibaldi (2015))

S12 (He et al. (2015))

S13 (Liu et al. (2015))

S14 (Phuong and Chau (2016))

S15 (Bui, Wyatt, and Cimino (2017a))

S16 (Jiang et al. (2017))

S17 (Lee et al. (2017))

S18 (Shweta et al. (2016))

Machine learning S1
S2
S3
S4
S5
S6

Overview of Datasets

In this section, we provide a quick overview of the most commonly used
datasets by the 18 de-identification systems outlined in Table 1. The most
commonly used datasets were introduced by the following three competi-
tions: the 2006 Informatics for Integrating Biology and the Bedside (i2b2)
competition (Uzuner, Luo, and Szolovits (2007)); the 2014 i2b2/UTHealth
shared task (Stubbs et al. (2015); Stubbs and Uzuner (2015c¢)); and the 2016
Centers of Excellence in Genomic Science (CEGS) and Neuropsychiatric
Genome-Scale and RDOC Individualized Domain (N-GRID) shared task
(Stubbs, Filannino, and Uzuner (2017); Stubbs and Uzuner (2017)).

The dataset for the 2006 competition included 889 unannotated discharge
summaries, also used for smoking challenges, manually broken into sentences
and tokenized. The dataset for the i2b2/UTHealth shared task 2014 included 2—5
records for each patient over a fixed period and was obtained from two large
academic tertiary hospitals: Massachusetts General Hospital (MGH), and Brigham
and Women’s Hospital (BWH) . It includes 296 diabetics patients with 1304
longitudinal medical records and contains three cohorts based on the diagnosis
of coronary artery disease (CAD) (Kumar et al. (2015); Stubbs et al. (2015); Stubbs
and Uzuner (2015a, 2015¢))).

The 2016 CEGS N-GRID shared task used psychiatric data, making it the
first ever competition to use psychiatric intake records (Lee et al. (2017);
Stubbs, Filannino, and Uzuner (2017)). The data for the 2016 competition
reflected the records “as is” (Stubbs, Filannino, and Uzuner (2017); Uzuner,
Stubbs, and Filannino (2017)): the state at which data was received from the
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sources. Unlike other medical data, such as that of the 2014 challenge, psy-
chiatric data contains an abundance of information related to the patients such
as places lived, jobs held, children’s ages, hobbies, traumatic events, patients’
relatives’ relationship information, and pet names. This makes it a much more
significant challenge to de-identify (Bui, Wyatt, and Cimino (2017b); Stubbs,
Filannino, and Uzuner (2017)).

MIMIC III is one the most extensive publicly available database
(Goldberger et al. (2000); Johnson et al. (2016)). It contains health records
of approximately sixty thousand admissions of patients in critical care units.
The database includes information such as demographics, laboratory test
results, procedures, medications, and physician notes.

Also, there were other data used by individual systems such as Chinese
data by S1 and Dutch data by Menger et al. (2018). Although we do not
describe these systems in this paper, it is important to note that these systems
also presented with high F-measure.

Overall F-Measure of De-ldentification System

Table 2 presents the de-identification systems that recorded an overall
F-measure of > 0.95. Each entry also outlines the datasets used to obtain
such results. The highest recorded overall F-measure was obtained by S3 and
S9 using MIMIC III dataset. One possible reason for such high accuracy
obtained using MIMIC III dataset could be due to the duplicates created by
cut and paste (Gabriel et al. (2018)). The i2b2 2014 is the most commonly used
dataset. It is important to point out S7 as the best performing system from the
actual i2b2 2014 competition. As shown in Table 2 there has been a substantial
improvement in F-measure since the 2014 competition. Unfortunately, this
might partly be due to overfitting of the now known and freely available test set.

Table 3 provides an outline of the techniques used by the de-identification
systems in Table 2. Machine learning only systems favor deep learning
approaches. Hybrid systems with the incorporation of handcrafted rules
and dictionary-based approaches are also used by a couple of the de-
identification systems to achieve high F-measure.

Table 2. De-identification systems with overall F-measure > 0.95.

F-measure

De-identification System i2b2 2006 i2b2 2014 i2b2 2016  MIMIC llI
S1 0.9879 0.9805

S3 0.9785 0.9923
S4 0.9746

S5 0.9800 0.9600

S6 0.9770

S7 0.9573

S8 0.9511

S9 0.9926
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Table 3. De-identification systems with overall F-measure > 0.95.

De-identification Techniques

System

S1 Recurrent neural network (RNN) + statistical text skeleton approach.
S3 RNN

S4 Conditional Random Field (CRF)

S5 Transfer Learning

S6 Artificial neural networks (ANNs)

S7 CRF + Rule based + Dictionary based

S8 CRF + Rule based

S9 Long Short Term Memories (LSTMs) + human-engineered features

F-Measure of Individual PHIs

In this section, we provide an overview of the systems that recorded
F-measure > 0.95 for individual HIPAA PHIs. Where the F-measure was
< 0.95, the highest recorded score is presented. We also provide some
possible issues relating to the PHIs that have lower F-measure. This section
also provides an overview of the i2b2 PHIs. These are the additional PHIs
introduced by the i2b2 2014 and 2016 competitions (Stubbs et al. (2015);
Stubbs and Uzuner (2015a, 2015c¢)). Although legally, as per HIPAA rules,
there are no requirements for these additional PHIs to be de-identified, the
competition organizers argue that these extra PHIs provide more security
over re-identification of data. Since i2b2 2014 and 2016 datasets are most
commonly used in the advancement of de-identification research, we feel it is
vital to also present the successes in these additional PHIs.

Table 4 provides an overview of the systems that achieved high
F-measures. It also outlines the datasets that were used to obtain such results.
Except for Fax and Device all other PHIs have obtained an F-measure of >
0.95. This is an incredible achievement and a significant improvement to the
results obtained in i2b2 competitions (Yogarajan, Mayo, and Pfahringer
(2018b)). Although Fax and Device recorded < 0.95 F-measure, it is impor-
tant to note that only a very few instances (< 10) were found in the datasets
for both of these PHIs. This makes improving the accuracy using machine
learning approaches very hard.

Table 5 provides an overview of the techniques used to obtain the F-measures
presented in Table 4. As observed in Table 3 there is a clear increase in deep
learning methods. With a combination of handcrafted rules, de-identification
systems have achieved high F-measure for the majority of the PHI. In several
cases, hand-crafted rules only also achieve high F-measure. Good examples are
License and E-Mail, where regular expressions work very well.

Table 6 provides an overview of F-measures for i2b2 introduced extra PHIs.
These PHIs are not part of the legal requirement as per HIPAA regulations but
are additional security for ensuring that patient privacy and confidentiality are
maintained. Compared to the recorded results in the i2b2 2014 and 2016
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Table 4. F-measure > 0.95 for HIPAA categories for de-identification. On
occasions where F-measure was not > 0.95, the highest score is presented.
CONTACT: URL and IP address; ID: BiolD, Healthplan, Social Security no, and
Vehicle license plate no; Face photo; and Any other unique code are PHIs that
were not present in any of the dataset, hence not included here.

PHI categories Sub-categories F-measure Reference Dataset
(HIPAA)
DATE Date > 095 S2,S3,54,58, 510 i2b2 2014
S11, 512, 513, 518
> 0.95 S3, 59 MIMIC
> 0.95 S14 i2b2 2006
> 0.95 S15, 16, 517, S8 i2b2 2016
NAME All names > 0.95 S3, 518 i2b2 2014
> 0.95 S3 MIMIC
AGE Age > 0.95 S1, S3, S8, 518 i2b2 2014
> 0.95 S3 MIMIC
> 0.95 S14 i2b2 2006
> 0.95 S15, 516, 517, S8 i2b2 2016
CONTACT Phone > 0.95 S3, S11 i2b2 2014
> 0.95 S9 MIMIC
> 0.95 S14 i2b2 2006
> 0.95 S17 i2b2 2016
Fax 0.80 S2 i2b2 2014
E-Mail > 0.95 S2, 510, S11 i2b2 2014
ID Medicalrecords > 0.95 S11, 512 i2b2 2014
> 0.95 S9 MIMIC
IDNUM > 0.95 S3 i2b2 2014
Device 0.80 S2,S3 i2b2 2014
License > 095 S17 i2b2 2016
LOCATION all > 0.95 S3 i2b2 2014
> 0.95 S9 MIMIC

Table 5. Techniques used for the F-measures presented in Table 4 for HIPAA PHI

categories.
PHI categories ~ Sub-categories Techniques
(HIPAA)
DATE Date CRF + Rules + Dictionary (S12); Bi-LSTM (S7);
CRF + Rules + Keywords (S11);
Hidden Markov model (HMM-DP) (52);
CRF + Rules (510, S14, 515, S17); LSTM (S16);
RNN (S3, S18); LSTM + Rules (S9); CRF (54)
NAME All names RNN (S3, S18)
AGE Age Bi-LSTM (S7); CRF + Rules (S14, S15, S17);
LSTM (S16); RNN (S1, S3, S18)
CONTACT Phone CRF + Rules + Keywords (S11); RNN (S3);
CRF + Rules (514, S17); LSTM + Rules (S9)
Fax HMM-DP (S2)
E-Mail Rules (510, S11); HMM-DP (S2)
ID Medicalrecords ~ CRF + Rules + Keywords (S11); LSTM + Rules (S9)
IDNUM RNN (S3)
Device HMM-DP (S2); RNN (S3)
License Rules (517)
LOCATION all RNN (S3); LSTM + Rules (S9)
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Table 6. The best F-measure for i2b2 extra categories for de-identification. This table
includes categories not included in Table 4, but were introduced by i2b2 competitions as
additional categories (Stubbs et al. (2015); Stubbs and Uzuner (2015a)). It also provides the
techniques used to achieve these F-measures.

PHI categories (i2b2 extra) Sub-categories F-measure Reference Techniques Dataset
NAME Doctor > 095 S3, S4 RNN; CRF i2b2 2014
> 095 S2 LSTM + Rules MIMIC
> 095 S14 CRF + Rules i2b2 2006
> 0.95 S17 CRF + Rules i2b2 2016
Patient > 095 S3, S4 RNN; CRF i2b2 2014
> 095 S2 LSTM + Rules MIMIC
> 095 S14 CRF + Rules i2b2 2006
Username > 0.95 S10 Rules; i2b2 2014
> 095 SN CRF + Rules + KW; i2b2 2014
> 0.95 S12 CRF + Rules + Dic i2b2 2014
LOCATION Hospital > 0.95 S3 RNN i2b2 2014
> 0.95 S2 LSTM + Rules MIMIC
City > 095 S3 RNN i2b2 2014
State > 095 S3 RNN i2b2 2014
> 095 S2 LSTM + Rules MIMIC
Street > 0.95 S3, 59 RNN; HMM-DP  i2b2 2014
> 095 S1 CRF + Rules + KW; i2b2 2014
Zip > 095 S10 Rules i2b2 2014
> 095 S1 CRF + Rules + KW; i2b2 2014
> 095 S12 CRF + Rules + Dic i2b2 2014
> 0.95 S2 LSTM + Rules MIMIC
> 095 S16 LSTM i2b2 2016
Organization 0.82 S3 RNN i2b2 2014
Country > 0.90 S3 RNN i2b2 2014
> 0.90 S2 LSTM + Rules MIMIC
Location- 0.57 S3 RNN i2b2 2014
Others
PROFESSION Profession 0.84 S3 RNN i2b2 2014

competitions, there is a substantial increase in the F-measure. Clearly,
Organization, Location-others, Profession and Country are the PHIs yet to
reach the 0.95 F-measure. These were also the PHIs that recorded a very low
F-measure in both competitions (see Yogarajan, Mayo, and Pfahringer (2018b)
for details). The main issue with Country and Organization is that the data is
very sparse. Location-others only occurs in thirteen instances in the dataset.
The sparsity of the data and the very low frequencies of same values make
achieving higher F-measures very hard. However, there is still an improvement
in results compared to that recorded in the competitions.

In Summary

This section showed the achievements in automating de-identification
research, with substantial improvement in F-measure of identifying PHI in
the overall systems and individual PHIs (notably the HIPAA required PHIs).
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Challenges

The biggest challenge in automating end-to-end de-identification is surrogate
generation and surrogate replacement (step 2 in Figure 1). At first sight, this
appears to be superficially simple when compared to step 1. However, when
one considers it in detail, there are many complex subtleties associated with
the surrogate generation and surrogate replacement. Unlike the research
toward increasing accuracy in identifying PHI, as seen in section 3, this is
an area where very little research progress has been made. There have been
only a few papers published in the recent years regarding surrogate genera-
tion and surrogate replacement for the de-identification problem, with the
schema developed in the 2014 i2b2 competitions being the prominent one to
date (Stubbs and Uzuner (2015b); Stubbs et al. (2015b)).

PHI are categorized into explicit identifiers and quasi-identifiers. Explicit
identifiers such as name, phone number and social security number are
directly linked to a patient. Quasi-identifiers such as age, gender, race and
zip code are not directly connected to a patient but can be linked to external
data sources and consequently be used to identify a patient, hence posing the
same risk to patient privacy as explicit identifiers.

In this section, we present examples of standard practices used in surro-
gate replacement and challenges faced. Automation in the surrogate genera-
tion is arguably still a very challenging and unsolved problem.

Examples of Surrogate Replacement of PHI

Table 7 provides an outline of some PHIs and the standard practices used in
a surrogate generation while creating de-identified data. Although all of these
practices are based on hand-crafted rules and pre-compiled tables, there was
also a need to do a manual check after the data is de-identified. This is to
ensure that medical correctness, readability and consistency are maintained
across the health data. Table 7 also indicates where manual checking after de-
identification was required. Surrogates need to maintain the same form as the
original, and where possible same internal temporal and co-reference rela-
tionships. Also, as illustrated in Figure 1 semantic links must be maintained,
for example between LOCATION and PROFESSION.

It is important to note that it is relatively easy to create surrogates
randomly and maintain co-references for PHONE, FAX, URLs and ID
(Stubbs and Uzuner (2015b); Stubbs et al. (2015b)). Any ambiguous words
appearing as part of a name, medical term or acronym were replaced using
a set of hand-crafted rules (Pantazos, Lauesen, and Lippert (2017)). This is
primarily because, in medicine, it is common to have diseases, signs and
symptoms being named after the person first describing it. One such example
is “Aaron” which can refer to a name of a person, or be part of a medical
term: Aaron sign referring the pain felt in the epigastrium.
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Table 7. Common practices used in surrogate generation and replacement of PHI as outlined in
(Johnson et al. (2016); Pantazos, Lauesen, and Lippert (2017); Stubbs and Uzuner (2015b); Stubbs
et al. (2015b)).

Manual
PHI Surrogate generation techniques check
DATE and Option 1: date shifting where all elements of dates (i.e. day, month and year) Yes
AGE are shifted
forward by the same random number.
Option 2: distorted identifier table is used where
date, month were changed but year was kept the same.
PHONE, FAX, Randomly created surrogates. -
URLs, ID
E-MAIL Manual replacement Yes
address
NAME Option 1: permutation tables with existing -

identifiers are mapped to new ones with
similar frequency of occurrence.
Option 2: Mapping between letters, maintaining
name type and sex.
LOCATION Random selection of surrogates from pre-compiled Yes
list or permutation tables ensuring the type of
location is matched.
PROFESSION  hand-crafted rules to select from pre-compiled list. Yes

Issues and Challenges Due to Surrogate Replacement of PHI

Table 7 provided an overview of techniques used in the surrogate generation
and replacement. However, there are many practical issues with some of
these rules and techniques which creates challenges in maintaining medical
correctness and usability of de-identified data in health advancement
research. Moreover, it is important to note in most cases there was a need
to manually check the surrogate replaced data to ensure consistency and
accuracy is maintained across patient data.

When DATE is changed to just the year or randomly changed it removes
inferrable information such as the “season” which could result in missing any
pandemic outbreak (Li and Qin (2017)). There is a need to maintain the
semantic link between the LOCATION and DATE to ensure such informa-
tion is not missed. Also, for PHIs DATE and AGE, medical correctness is
a major issue. Birth dates have to be transformed such that the patient age is
in a similar age range. Otherwise diagnosis patterns will become inapplicable.
For example, a 20-year-old de-identified to be a 60-year-old will cause issues
in medical diagnosis.

When LOCATION such as zip code is replaced by random zip codes (even
from a pre-compiled list), geographical information is distorted. For exam-
ple, a patient living in a high socioeconomic area being moved to low decile
area, or vice versa, will result in relevant information about the living
conditions and life expectancy changing. This could mislead patient diag-
nosis, or miss vital information in patient care. In addition to socioeconomic
issues relating to LOCATION, there is also ethnicity information. For
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example, in New Zealand, there are parts of the country, such as Northland,
where there is known to be a higher population of New Zealand’s indigenous
Maori people. If everyone from Northland is moved to another LOCATION
or spread across several LOCATIONS, the ethnicity information is also lost
in the de-identified data. It is very challenging to ensure such information is
not lost without introducing systemic bias toward a sub-population, e.g.
Maori people in the New Zealand example above.

With NAME, if the patient’s name, for example, “John”, is replaced by
“Tack”, then there is a need to ensure all of his medical records reflect this
change. For instance, in addition to the free text data that was replaced, the
change must also be made consistently across all of his longitudinal data,
including but not restricted to his structured data and medical images. In
addition, the name change should also reflect correctly on his family’s
medical records, i.e. his wife’s records and his childrens. This does allow
the consistency and medical correctness to be maintained in de-identified
data (Pantazos, Lauesen, and Lippert (2017)). The need to maintain consis-
tency and medical correctness makes automating de-identification a very
challenging task and does require manual checks and inputs (Pantazos,
Lauesen, and Lippert (2017); Stubbs et al. (2015b)). Also, in order to main-
tain readability, a patient name must be replaced by a new name that looks
real and consistency should also be taken into consideration. For example,
the frequency of the name in a database needs to be consistent. A rare name
occurring more frequently will not look real.

One of the many challenges faced in de-identifying medical, free text data
is ambiguous words. In many cases, it is challenging to differentiate between
an everyday word, medical word and part of the patient name. This may
result in errors with surrogate replacement where for instance a medical term
is replaced by a person’s name surrogate.

In Summary

This section presented common practices used in surrogate generation and
replacement, where most of the techniques rely on hand-crafted rules and
pre-compiled tables. We outline some of the important challenges faced in
this step of de-identification and argue that automation in surrogacy is still
an open question with many obstacles to overcome.

Risks

De-identified data in addition to protecting patient privacy should also meet
the following standards: medical correctness, readability and consistency
across data (Pantazos, Lauesen, and Lippert (2017)). Risks around de-
identification of health data can be classified into two main areas: the risk
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of re-identification and the risk of losing usability, medical correctness and
consistency across data. In this section, we provide a brief overview of these
two areas.

Re-Identification

Re-identification is a process where a person’s identity is identified from the
de-identified data. This does result in a serious breach of patient privacy and
confidentiality. Explicit identifiers such as person’s name and address can be
considered obvious identifiers. However, even quasi-identifiers can result in
re-identification of a person (Johnson et al. (2018); Li and Qin (2017);
Sweeney (2002)). There have been many examples of such occurrences
where quasi-identifiers have been matched with external resources to identify
patients. For example, it was proven that attributes such as gender, date of
birth and zip code could be matched with external sources such as voting
data to identify a patient (Li and Qin (2017); Sweeney (2002)). Also, other
examples demonstrate that a combination of a small subset of quasi-
identifiers, with or without other medical data, may even be enough to
identify the individual patient and pose serious threat to patient privacy (El
Emam et al. (2006); Mayo and Yogarajan (2019)).

In addition to explicit identifiers and quasi-identifiers, there are also the
sensitive attributes such as psychiatric diseases, HIV, and cancer, which
patients are not willing to be associated with. Due to the specific nature of
these sensitive attributes and the need for special care facility these attributes
when combined with other identifiers makes re-identification of a patient
much more feasible (Gkoulalas-Divanis, Loukides, and Sun (2014)).

The risk of re-identification is real and can lead to serious breaches of
patient privacy and confidentiality. While designing an automatic de-
identification system, it is important to consider the re-identification risk
and take appropriate measures to minimize such risk. Also, there needs to be
transparency in acknowledging such concerns. The main questions when it
comes to re-identification are:

e What is the accepted level of risk with re-identification?
e Who makes that decision, the de-identification system designers, the
users or the patients?

There is no easy or correct answer to these questions, but they still need to be
considered when designing a de-identification system. There is a need for
human input in making such decisions and deciding the boundaries of
acceptable risk associated with de-identification of a medical system.
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Medical Correctness and Usability of De-identified Data

Maintaining medical correctness, consistency, readability and usability of
data is a difficult problem and the risks associated with this are usually
overlooked. Compared to de-identification of structured data, unstructured
free text is very challenging. It contains medical information about a patient
that needs to be preserved for medical correctness. However, it also contains
personal details such as name, phone number, family members names and
other personal identifying items. Although the accuracy of identifying PHI in
such data has improved considerably, ensuring these PHI are replaced with
appropriate surrogates, and medical correctness maintained, is an open
question. This poses a great risk in using de-identified data for machine
learning based health research, as the de-identified health records may
compromise the accuracy and outcome of the resulting model. For example,
accidentally replacing a word that resembles a name but is not a name
(maybe an abbreviation for a disease, or a disease name itself) can result in
readability and medical correctness errors (Pantazos, Lauesen, and Lippert
(2017)). The hope is that the original data and the de-identified data of
a particular problem will result in the same outcome. However, there is no
clear evidence that it does. In reality, the only way to check if it does or does
not, is by building models for both versions of the data and comparing them.

Many of the surrogate replacements use randomized identifiers. However,
in such cases, the readability and consistency are compromised (Pantazos,
Lauesen, and Lippert (2017)). Unless manually checked there is no guarantee
these randomly replaced PHI makes much sense in the context and provide
useful data outcomes.

Another significant risk is accidentally confusing patients. Lets say you
have two patients in the same age range, both named Anne Smith, but one
presenting with cancer and the other one with cardiovascular issues.
Ensuring these two are kept separated across all of their data, especially
longitudinal data, can be very hard. This will require using several PHI to
match the person’s identity. However, in this case, there is an increased risk
of re-identification. This poses a question around confidentiality vs verifia-
bility, and as a result, increases the risk. This problem cannot be readily
solved by using unique identifiers (such as NHI numbers, date of birth or tax
numbers) to match narratives, as automated de-identification systems by
design prune such de-identifiers. Furthermore, HIPPAs Safe Harbor provi-
sion mandates the removal of such unique identifiers (Garfinkel (2015);
Stubbs et al. (2015a)). Similarly, New Zealands Privacy Act and Health
Information Privacy Code set strict limits on the assignment and use of
unique identifiers (Health & Disability Commissioner (2009); Office of the
Privacy Commissioner (2013)).
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Summary

This area outlined the two main risks associated with de-identification: the risk
of re-identification and the risk of losing usability, medical correctness and
consistency across data. Minimizing the risk posed to patient privacy and
confidentiality is vital. The risk of re-identification must be considered
a severe threat when designing a de-identification system. The de-identified
data must also maintain medical correctness, readability and consistency. The
advancement of health research using de-identified data does rely on the
usability of data and medical correctness of data. There is a need for a manual
check to ensure that the de-identified data resembles the original data.

Discussion

To best of our knowledge, this is the first paper to present a complete picture
of end-to-end automatic de-identification of medical narratives. Noticeably,
the majority of the research is done on improving the accuracy of PHI
identification in the overall system and of individual PHI. We acknowledge
the need for such research, and despite the recent advancements in this area,
mainly due to the use of deep learning in natural language processing tasks,
there is more room for improvement. At this stage the minimum require-
ment of 95% F-measure has been met by several systems, but this is only the
minimum requirement. There is room for higher F-measures. Also, it will be
nice to take these systems to the next level, where in addition to the open
access data they use other sources of data. It will be interesting to see the
adaptability of these systems.

One of the big downfalls to these systems is that they do not outline the
surrogacy generation aspect of de-identification. However, de-identification
is not just about identifying the PHI, but is also replacing the identified PHI
with appropriate surrogates. As mentioned earlier there is very little
research done in this area, and clearly, there are many challenges yet to be
overcome. Also, most of the current practices are data specific and use
hand-made rules and pre-compiled tables. This is far from achieving full
automation in the de-identification problem, and there is an explicit
acknowledgment of the need for manual checks after surrogate replacement.
We encourage for more research in this area, where the priority is to address
some of the challenges outlined in this paper and also to eliminate the need
for manual checks.

The importance of automatic de-identification in advancing health
research cannot be emphasized enough. However, there is still a need to be
aware of the risks associated with designing such systems. This will ensure
that risk to patient privacy and confidentiality is minimized while advancing
the field of medicine through maximizing the potential of EHR with the use
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of machine learning techniques. Also, it is vital that the medical correctness,
consistency, readability and usability of data are all maintained such that the
resulting de-identified data provides the parallel output to that of the original
data. It must be pointed out that high accuracy of de-identification is directly
proportional to medical correctness. It does become harder to maintain the
medical correctness and usability of data when achieving high accuracy
becomes the focus. Hence, de-identification of data does become
a balancing act where barriers associated with risk and benefits must both
be considered. This is another area where there needs to be more research
done in proving that de-identified data is providing the same outcomes as the
original data.

The challenges and risks associated with de-identification have opened
new avenues of research in finding alternatives. One has to ask the question:
“What if proper de-identification is impossible?”. Guinney and Saez-
Rodriguez (2018) proposes an alternative idea for sharing confidential data
called “model to data” where the flow of information between data genera-
tors and modelers is reversed. Another idea presented by Vepakomma et al.
(2018) proposes a deep learning model which excludes the need to share raw
patient data or labels. These are merely examples of alternatives, and are just
the beginning of possibly solving the problem of sharing and using EHR
without the risk to patient privacy and confidentiality.
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