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ABSTRACT

Aims: To examine the best count data model for injury data in the National Health
Interview Survey (NHIS). To compare the best count data model with traditional logistic
regression model in analyzing injury data in NHIS.

Data Source: 2006-2010 medically consulted non-occupational injury data from National
Health Interview Survey (NHIS).

Methodology: Six count data models (Poisson, negative binomial (NB), zero-inflated
Poisson (ZIP), zero-inflated NB (ZINB), hurdle Poisson (HP), and hurdle NB (HNB)) were
compared using Likelihood Ratio (LR) test and Vuong test. Injury count was used as the
dependent variable in count data models. Independent variables included age, gender,
marital status, race, education, poverty status, disability status and medical insurance
coverage status. Dichotomized injury count was used as the dependent variable in logistic
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regression model. The same independent variables used in count data models were
included in logistic regression model. The model fit of logistic regression was examined by
Hosmer and Lemeshow goodness of fit test.

Results: Among 248,850 participants aged 18-64, 98.37% have no medically consulted
non-occupational injuries, 1.55% have 1 medically consulted non-occupational injury,
0.07% have 2 or more medically consulted non-occupational injuries. Zero-inflated
negative binomial (ZINB) model offered the best fit. Logistic regression model provided a
good fit but resulted in different estimates from ZINB model.

Conclusion: Zero-inflated negative binomial (ZINB) model demonstrated the potential to
be the best model for injury count data with excess zeros. Given the infrequent
occurrence of multiple injuries in our data, the logistic regression model is appropriate for
assessing injury burden and identifying injury risks. However, for more frequently-
occurring injuries (e.g. sports injuries), logistic regression may undercount the total
number of injuries and result in biased estimates. The evaluation procedure and model
selection criteria presented in this paper provide a useful approach to modeling injury
count data with excess zeros.

Keywords: Injury epidemiology; National Health Interview Survey (NHIS); injury count data;
logistic regression model; Zero-inflated Negative Binomial (ZINB) model.

1. INTRODUCTION

Count outcomes are commonly encountered in injury epidemiology, such as the count of
occupational injuries among US workers and the count of falls among elderly people. Most
injury studies [1-4] use logistic regression models to analyze injury count data. In logistic
regression, injury count is dichotomized into a binary outcome (absence or presence of
injuries). This approach may underestimate the burden of injuries, diminish the accuracy of
identifying injury risk factors, and bias evaluations of injury intervention programs. Models for
analyzing count data have been developed [5]. Because count data models use exact injury
count as the dependent variable, they are capable of assessing injury burden in terms of
injury frequency rather than the presence or absence of injuries.

Even though count data models are perhaps better suited to handle injury count data than
logistic regression, few applications can be found in the current literature. Karazsia and van
Dulmen [6] examined the appropriateness of four count data models (Poisson, negative
binomial (NB), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB)) in
identifying predictors of children’s medically attended injuries. They found that some models
fit the data more accurately than others and the predictors of children’s medically attended
injuries tended to vary depending on the specific model utilized. Therefore, they encouraged
researchers to select count data models according to the characteristics of their data. Ullah
et al. [7] compared four count data models (Poisson, negative binomial (NB), zero-inflated
Poisson (ZIP), zero-inflated negative binomial (ZINB)) in analyzing falls count data from four
separate datasets. Their results showed that the NB model offered the best fit and therefore
was recommended for future studies in modeling falls count data. Khan et al. [8] examined
the appropriateness of six count data models (Poisson, negative binomial (NB), zero-inflated
Poisson (ZIP), zero-inflated negative binomial (ZINB), hurdle Poisson (HP) and hurdle
negative binomial (HNB)) in analyzing falls count data from a prospective cohort study. They
found that NB-based regression models performed better than other count data models, with
the HNB model offering the best fit. They did however point out that the HNB model might
not offer the same advantage for other falls count data.
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National Health Interview Survey (NHIS) has been widely used in injury research [9-13].
Although injury count data are available in this survey, no study has examined the best count
data model for these data. This study aimed to identify the best count data model for the
injury data in NHIS and compare the best count data model results with traditional logistic
regression model results. For these purposes, six count data models (Poisson, negative
binomial (NB), hurdle Poisson (HP), hurdle negative binomial (HNB), zero-inflated Poisson
(ZIP) and zero-inflated negative binomial (ZINB)) were implemented and compared. The best
count data model was then compared to logistic regression model in terms of model fit and
regression estimates.

2. MATERIALS AND METHODS
2.1 Data Source

National Health Interview Survey (NHIS) has been widely used in injury epidemiology. It is
publicly available on the website of National Center for Health Statistics (NCHS)
http://www.cdc.gov/nchs/nhis.htm [14], which is part of the Centers for Disease Control and
Prevention (CDC) in the United States. With a complex, multistage sampling design, NHIS is
a cross-sectional survey conducted by the National Center for Health Statistics through
personal household interviews. Health information is collected on all members of selected
households who are at home at the time of the interview; for children, adults who are not at
home and those are physically or mentally unable to respond, information is provided by a
knowledgeable adult family member. The overall response rate for the survey is close to 90
percent. The last major revisions of the content and the sampling design occurred in 1997
and 2006, respectively. Since there were no major changes in the content or in the sampling
design from 2006 to 2010, we could develop models using the combined 5-year data (2006-
2010). The NHIS data are segmented into several files based on which respondent was
interviewed. In this study, we used the person file (includes persons of all ages) for
demographics, including disability information; the family file for family income; the adult file
(includes only persons aged 18 years or older) for occupation; and the injury episode file for
injury characteristics.

The data analyzed in this study are de-identified publicly accessible data. The Institutional
Review Board of Nationwide Children’s Hospital reviewed the study protocol and decided
that this study was exempted.

2.2 Data Analysis

Poisson, negative binomial (NB), hurdle Poisson (HP), hurdle negative binomial (HNB), zero-
inflated Poisson (ZIP), zero-inflated negative binomial (ZINB) models were each fit to the
data using PROC NLMIXED in SAS 9.3 (SAS Institute, Cary, NC). The dependent variable
was the count of medically consulted non-occupational injuries that occurred in the last three
months (prior to the interview) among people between 18 and 64 years old. To obtain
graphical illustration of model fit, the observed proportions minus mean predicted
probabilities of each injury count were plotted (using intercept-only models). Independent
variables included in the models were age, sex, marital status, race, education level, poverty
status, disability status and medical insurance coverage status. For the purposes of this
study, continuous variable age was categorized into three age groups. Ages 18-29 years are
young adults, ages 30-54 years are adults, and ages 55-64 years are older adults. Other
independent variables were categorical variables as defined in the survey questionnaire. The
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same set of independent variables was used in the logit part (See Appendix 1 function (6),
(9)) and the log linear part (See Appendix 1 function (2)) of HP, HNB, ZIP and ZINB models.

Various statistical tests were conducted to examine over-dispersion and to compare model
fit. Over-dispersion in the Poisson regression was evaluated by Cameron and Trivedi test
[15]. Since NB model and HP model can reduce to the Poisson model under certain
conditions, they are nested models and can be compared using the Likelihood Ratio (LR)
test. For those non-nested models, such as Poisson and ZIP, Vuong test [16,17] was used to
compare their fit to our data.

Coefficients of the best count data model were estimated in STATA 12 (StataCorp, College
Station, TX) with the incorporation of survey weights. In order to compare the best count data
model with logistic regression model, a logistic regression (with the same set of independent
variables as in the best count data model) was implemented. Dichotomized injury count (“0”
indicating no injuries and “1” indicating one or more injuries) was used as the dependent
variable in logistic regression model. The model fit of logistic regression to our data was
examined by Hosmer and Lemeshow goodness of fit test [18].

3. RESULTS
3.1 Descriptive and Graphical Analysis of Injury Count Data in NHIS

Table 1 presents the distribution of the dependent and independent variables used in our
models. Among 248,850 participants, 98.37% reported no medically consulted non-
occupational injuries, 1.55% reported 1 injury and 0.07% reported 2 or more injuries. The
hurdle negative binomial (HNB) model could not be fitted to our data. We tried to fit the data
with HNB model using both SAS 9.3 (SAS Institute, Cary, NC) and STATA 12 (StataCorp,
College Station, TX). But the model never converged. To verify if our SAS programs on HNB
model were accurate, we applied the SAS programs from another similar study [19] to our
data but the model still did not converge. We were able to implement and compare the other
five count data models in our study.

Fig. 1 shows the observed proportions minus the mean predicted probabilities of each injury
count for five count data models. The Poisson model predicted many fewer Os and many
more 1s than observed. The NB, HP, ZIP and ZINB models showed a substantial
improvement over the Poisson model. Although these models each predicted similar
proportions of Os as observed, they tended to underestimate the proportion of 1s and
overestimate the proportion of 2s.

3.2 Count Data Model Selection

The observed variance of non-occupational injury counts (0.020) was larger than the mean
(0.017), indicating evidence of over-dispersion. This is supported by the results of Cameron
and Trivedi test (t = 9.12, P<.0001). Based on the results from Likelihood Ratio (LR) tests
and Vuong tests, zero-inflated negative binomial (ZINB) model resulted in the best statistical
fit (see Table 2). Although it was difficult to determine which model fits better among negative
binomial (NB), hurdle Poisson (HP) and zero-inflated Poisson (ZIP) models (given | V |<1.96,
none of the models were preferred), they performed better than the Poisson model.
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Table 1. Distribution of the dependent and independent variables in count data models

Variable name Frequency Percent
Dependent variable
Number of non-occupational injuries

0 244792 98.37

1 3855 1.55

2 160 0.06

3 27 0.01

4 10 0

5 6 0
Independent variables
Age group

18-29 65022 26.13

30-54 141032 56.67

55-64 42796 17.20
Gender

Male 119620 48.07

Female 129230 51.93
Marital Status

Married 138623 55.71

Single/never married 72098 28.97

Separated/divorced/widowed 36148 14.53

Unknown 1981 0.80
Race

Hispanic 58795 23.63

Non-Hispanic White 132908 53.41

Non-Hispanic Black 37548 15.09

Others 19599 7.88
Education

No college education 108836 43.74

Received College education’ 133439 53.62

Unknown 6575 2.64
Poverty status

Poor 29402 11.82

Near poor 36535 14.68

Not poor 140851 56.60

Unknown 42062 16.90
Disability status

Non-disabled 223611 89.86

Disabled” 24284 9.76

Unknown 955 0.38
Medical insurance coverage status

Not covered with medical insurance 57632 23.16

Covered with medical insurance 188465 75.73

Unknown 2753 1.11

1. Defined as “receipt of some college education” or “receipt of bachelor’s degree or above”.
2. Defined as “limited, caused by at least one chronic condition”, “Limited, not caused by chronic condition” or
“Limited, unknown if condition is chronic”
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Table 2. Model comparison results of the fitted models for injury count data from 2006-

2010 NHIS

Nested models LR statistics® Preferred model
Poisson vs NB 507 NB

Poisson vs HP 489 HP

Non-nested models Vuong statistics” Preferred model
HP vs NB -1.04 N/A

ZIP vs NB -1.01 N/A

ZIP vs HP 61.2 ZIP

ZIP vs Poisson 7.24 ZIP

ZINB vs NB 4.23 ZINB

ZINB vs HP 61.3 ZINB

ZINB vs ZIP 3.69 ZINB

ZINB vs Poisson 7.54 ZINB

NB, negative binomial;, HP, hurdle Poisson,; ZIP, zero-inflated Poisson;
ZINB, zero-inflated negative binomial; NHIS, National Health Interview Survey.
a. Likelihood Ratio (LR) test (for nested models): If the LR statistics x? >xf =3.84, the more complex
model is preferred.
b. Vuong (V) test (for non-nested models): If V > 1.96, the first model is preferred; if V < -1.96, then the
second model is preferred; if | V |<1.96, none of the models are preferred.

3.3 Estimation Results from the Best Count Data Model

Results from the best count data model (ZINB model) are shown in Table 3. The first column
describes the independent variables used in the ZINB model. The second and third columns
report the estimated coefficients and p-values in the logit part of the ZINB model (see
Appendix 1 function (9)). The last two columns report the estimated coefficients and p-values
in the log linear part of the ZINB model (see Appendix 1 function (2)). Based on these
estimated coefficients, the ZINB model can be used to predict the probability of a person
being in the always-zero group and his/her expected number of injuries given that he/she is
in the not-always-zero group. For example, consider a 30 year old White married man who is
college educated, not poor and has medical insurance. If he has disabilities, the probability of
him being in the always-zero group is 50% and the expected number of injuries given he is in
the not-always-zero group is 0.054. If he does not have disabilities, the probability of him
being in the always-zero group remains the same (50%), whereas the expected number of
injuries given he is in the not-always-zero group would be 0.020. These results have two
important implications. First, disability status may not be associated with the probability of a
person being in the always-zero group. Second, given in the not-always-zero group, people
with disabilities would sustain approximately three times as many injuries as their non-
disabled counterparts. Furthermore, the ZINB model can also be used to estimate the odds
ratio of getting injured between people with and without disabilities. Another ZINB model (a
single covariate disability was included in the log linear part; age, marital status, race,
education level, poverty status and medical insurance coverage status were included in the
logit part) was implemented and compared with another logistic regression model (a single
covariate disability was included in the model). The point estimate of the odds ratio obtained
from the ZINB model (OR=2.91) was approximately the same as from the logistic regression
model (OR=3.01) (See Appendix 2 for the formulas of calculating odds ratios). The statistical
theory of building confidence intervals for odds ratios resulting from ZINB model is not
available in the current literature.
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Table 3. Estimated coefficients from the ZINB regression for injury count data from
2006-2010 NHIS

Variable ZINB model coefficient estimates
Logit part’ Log linear part’

Constant 0.71 (P=.57) -4.26* (P=.00)

Ages 18-29 years (reference group)

Ages 30-54 years 0.95 (P=.27) -0.17 (P=.19)

Ages 55-64 years -0.38 (P=.88) -0.19 (P=.15)

Female (reference group)

Male -0.16 (P=.80) 0.02 (P=.71)

Married (reference group)

Single/never married -0.15 (P=.88) 0.25* (P=.03)

Separated/divorced/widowed -1.33 (P=.08) 0.37* (P=.00)

Hispanic (reference group)

Non-Hispanic White -2.00 (P=.16) 0.33* (P=.04)

Non-Hispanic Black -2.28* (P=.04) -0.002 (P=.99)

Other races -0.31 (P=.76) 0.40 (P=.12)

Not received college education
(reference group)

Received college education -1.01 (P=.12) 047" (P=.00)
Poor (reference group)

Near poor -0.22 (P=.71) -0.25* (P=.03)
Not poor -2.47 (P=.07) -047* (P=.01)
Unknown poverty status -0.55 (P=.50) -0.63* (P=.00)
Not disabled (reference group)

Disabled -1.23 (P=.35) 1.01* (P=.00)
Not covered with medical insurance (reference

group)

Covered with medical insurance 0.12 (P=.75) 0.30* (P=.00)

*indicates significant estimated coefficients (P < .05)
ZINB, zero-inflated negative binomial; NHIS, National Health Interview Survey

Pi \_ ..
1.L0g (Tpl) = Zi]/
2.Log (ui) = XiB

3.4 Estimation Results from the Logistic Regression Model

Table 4 provides the results from a logistic regression model with the same independent
variables as in the ZINB model. It shows that receiving a college education, having
disabilities and being covered with medical insurance are all associated with an increased
odds of reporting one or more medically consulted non-occupational injuries. Younger people
(age 18-29) were more likely to report one or more medically consulted non-occupational
injuries than older people (age 30-64); married people were less likely to report one or more
medically consulted non-occupational injuries than unmarried people; Hispanics were less
likely to report one or more medically consulted non-occupational injuries than other races;
poor people were more likely to report one or more medically consulted non-occupational
injuries than near poor or not poor people. The results from Hosmer and Lemeshow
goodness of fit test indicated that this logistic regression model resulted in a good fit to our
data (P = .30). This is likely attributable to the rare occurrence of multiple injuries in our data
(only 0.07% of the participants had two or more injuries, see Table 1).
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Table 4. Estimated coefficients from the logistic regression for injury count data from
2006-2010 NHIS

Variable Logistic regression coefficient estimates
Constant -4.84* (P=.00)
Ages 18-29 years (reference group)

Ages 30-54 years -0.23* (P=.00)
Ages 55-64 years -0.19* (P=.00)
Female (reference group)

Male 0.02 (P=.50)
Married (reference group)

Single/never married 0.28* (P=.00)
Separated/divorced/widowed 0.44* (P=.00)
Hispanic (reference group)

Non-Hispanic White 0.65* (P=.00)
Non-Hispanic Black 0.34* (P=.00)
Other races 0.46* (P=.02)
Not received college education (reference group)

Received college education 0.26* (P=.00)
Poor (reference group)

Near poor -0.23* (P=.00)
Not poor -0.25* (P=.00)
Unknown poverty status -0.56* (P=.00)
Not disabled (reference group)

Disabled 1.01* (P=.00)

Not covered with medical insurance
(reference group)
Covered with medical insurance 0.29* (P=.00)

*indicates significant estimated coefficients (P<.05). NHIS, National Health Interview Survey
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Fig. 1. Observed minus predicted probabilities at each injury count: Poisson, negative

binomial (NB), hurdle Poisson (HP), zero-inflated Poisson (ZIP), zero-inflated negative

binomial (ZINB) models; while the non-Poisson models produced close results, Vuong
test showed clear superiority of the ZINB model over others
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4. DISCUSSION

Injuries are a major public health concern in the United States. Despite ongoing progress in
injury prevention, the toll of injuries in terms of medical expenses and work loss remains
unacceptably high. There have been numerous studies investigating injury characteristics
and risk factors. Most studies use logistic regression models to analyze injury count data.
However, logistic regression considers multiple injuries as an identical incident “having one
or more injuries”, therefore may undercount the total number of injuries and diminish the
accuracy when examining injury risk factors. The present study is the first to identify the best
count data model for injury data in the National Health Interview Survey (NHIS) and compare
it to traditional logistic regression model.

4.1 Best Count Data Model for Injury Data in the National Health Interview
Survey (NHIS)

Six count data models (Poisson, negative binomial (NB), hurdle Poisson (HP), hurdle
negative binomial (HNB), zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB))
were fitted to injury count data in the U.S. National Health Interview Survey. Hurdle negative
binomial (HNB) model could not converge. This likely was attributable to a conflict between
the model assumptions and the nature of our data. Although injury count data in NHIS are
over-dispersed, non-zero count data may be under-dispersed. A further analysis on the
distribution of non-zero count data showed that the mean of non-zero count (1.07)
is approximately 10 times the variance (0.11), indicating under-dispersion. The zero-inflated
negative binomial (ZINB) model turned out to be the best count data model. This finding is
consistent with a recent study on modeling count data of Activities of Daily Living (ADL-s)
with excess zeros [20]. However, Khan et al. [8] found that the HNB model offered the best fit
to falls count data with excess zeros. In comparison, they analyzed falls count data from a
prospective cohort study with 465 women aged 40-80 years old; we studied non-
occupational injury count data from a national health survey with 248,850 participants aged
18-64 years old. Their data had 71% zero counts and 6% more than two counts; our data
had 98.37% zero counts and 0.01% more than two counts. They examined the
appropriateness of count models with only intercept; we compared count models with
covariates. They also asserted that HNB might not offer the best fit for other injury count data
and that the theoretical interpretations of models dealing with excess zeros could be
improved.

The suitability of ZINB to our data may be attributable to the nature of NHIS survey design
and the distribution of its injury count data. The NHIS questionnaire asked for the number of
injuries that occurred during the last three months prior to the interview. This indicates that
most people may not report any injuries (98.37% has no injuries), indicating excess zeros.
Therefore, count data models specifically developed for handling excess zeros should offer a
good fit to our data. Both zero-inflated and hurdle models can deal with excess zeros but
have one important distinction in modeling zero counts. Zero-inflated models assume zero
counts come from two groups: one group contains only zero counts (always-zero group), the
other includes both zero and non-zero counts (not-always-zero group). In contrast, hurdle
models assume that all zero counts come from one source, while all positive counts come
from another source. In fact, zero-inflated models performed better than hurdle models in this
study. This supports the theoretical interpretation that some people always score zero
because they were in the low-risk group; others in the high- risk group might also score zero
because they did not have any injuries during the three-month recall period (a relatively short
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period for incurring injuries). In addition, ZINB model performed better than ZIP model due to
previously mentioned over-dispersion of the NHIS data.

4.2 Comparison of ZINB Model and Logistic Regression Model for Analyzing
Injury Data in NHIS

The ZINB model can predict the probability of a person being in the low-risk group and the
expected number of injuries given he/she is in the high-risk group, and can examine injury
risk factors in terms of injury frequency. Although the logistic regression model offered a
good fit to our data, it examines injury risk factors in terms of the presence or absence of
injuries rather than injury frequency. This distinction in examining injury risk factors between
ZINB model and logistic regression model may lead to different conclusions. For example, a
study of injury data in NHIS using logistic regression indicated that workers with disabilities
were more likely to have non-occupational injuries than workers without disabilities [2].
However, our results showed that adults with disabilities and adults without disabilities have
the same probability of being in the low-risk group; if in the high-risk group, adults with
disabilities sustained approximately three times as many non-occupational injuries as their
non-disabled counterparts.

4.3 Limitations of Injury Count Data in NHIS

Some limitations of our data should be noted. First, some independent variables are subject
to moderate amounts of missing values. For example, 16.9 percent of the subjects have an
unknown poverty status. This is perhaps because affluent families may be more reluctant to
report their incomes. Although the missing data may result in bias in coefficient estimates,
such bias is likely consistent over the years and therefore likely would not affect our
conclusions. Another limitation of our data is that the NHIS only reports injuries that occurred
during the last three months prior to the interview. Three-month period may be too short to
detect any difference in the probability of being in the low-risk group, especially when
comparing adults with and without disabilities.

5. CONCLUSION

The zero-inflated negative binomial (ZINB) model resulted in the best count data model for
injury data in the National Health Interview Survey (NHIS) and demonstrated the potential to
be the best model for injury count data with excess zeros. Given the infrequent occurrence of
multiple medically consulted non-occupational injuries in NHIS, the logistic regression model
is appropriate for statistical analysis. However, for more frequently-occurring injuries (e.g.
sports injuries), logistic regression may undercount the total number of injuries and result in
biased estimates since multiple injuries are collapsed into a single unit. The evaluation
procedure and model selection criteria presented in this paper provide a useful approach to
modeling injury count data with excess zeros.
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APPENDIX
1. COUNT DATA MODELS

Count data models can be used for injury frequency analysis because the number of injuries
is a non-negative integer. This study compared six commonly used count data models:
Poisson, negative binomial (NB), hurdle Poisson (HP), hurdle negative binomial (HNB), zero-
inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) [1]. For the basic Poisson
model, the probability of subject i having y; injuries is

—u.)u Y1
P(y) = %, yi =0,1,2, .., (1)

where |; is subject i’'s expected number of injuries. Poisson model specifies M, by using a
log-linear function:

M, = exp(X;B), (2)

Where X; is a column vector of independent variables and & is a column vector of estimated
coefficients [1,4].

However, the equi-dispersion (equal mean and variance) property of Poisson model restricts
its applications in real-life data. Frequently, data are “over-dispersed” as the variance often
exceeds the mean. This leads to underestimation of the standard errors of coefficient
estimates and therefore incorrect inferences could be drawn. To account for over-dispersion,

negative binomial (NB) model has been developed by introducing a new parameter A;:
A = exp(XiB + &) = pexp (€1, (3)

where exp (€;) is a gamma-distributed error term with mean 1 and variance @ . The addition

of this term allows the variance to exceed the mean as V[y;] = E[y;] + a- E[y;]?. The
negative binomial probability mass function has the form:

-1

P -1 \& ) Vi
P(y) = —2ite ) (“ ) (—“1—) a>0, (4)

Myi +DM@™1) \a~1+y; a 4y

where I'(-) is a gamma function, M, = exp(X;B) is subject i's expected number of injuries
and « is the over-dispersion parameter. The negative binomial model reduces to the Poisson

model as @ approaches 0. Therefore, when ix is significantly different from 0, negative
binomial model should be applied; otherwise, Poisson model is preferred [1,4].

In addition to the over-dispersion, count data often have more observed zeros than expected
from the Poisson model. This issue is known as “excess zeros”. To account for excess zeros,
hurdle models have been developed by assuming that zero counts and positive counts
originate from two distinct data generating processes. For example, if the count of cups or
glasses of alcohol consumed during the last year is the outcome, non-drinkers score zero
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because they do not consume alcohol at all; while drinkers score positives as they should
have consumed at least one glass of alcohol during the last year. Hurdle Poisson (HP) model
can be derived by modeling positive counts with a zero truncated Poisson model. Its
probability mass function has the form:

Gi lfyl =0
P(yi) = { @-8)-exp(-pp-p;’i
(1—exp(=H)yi!

®)

lfyl >0

where 0; is the probability of subject i having no injuries, M, = exp(X;B) is subject i's
expected number of injuries given subject i has at least one injury [1,2].

Hurdle Poisson (HP) model specifies the probability of subject i having no injuries (6;) by
using a logit function:

Gi 4
Log (=g =2V (6)

Where Z; is a column vector of independent variables, ¥ is a column vector of estimated
coefficients.

Similarly, hurdle negative binomial (HNB) model can be derived by modeling positive counts
with a zero truncated negative binomial model. Its probability mass function has the form:

Gi lfy1 =0
P(yi) = (1-6) Titah (a-l )“_1( b )Yi

-1 - — .
1-(a /@ t4p)® T@HDIE@) a4y, a~ 4y

()

lfyl >0’

where [J; = exp (XIB) is subject i's expected number of injuries given subject i has at least

one injury, a is the over-dispersion parameter and ; is the probability of subject i having no
injuries; O; is specified by (6).

Zero-inflated models have also been developed to deal with excess zeros but its
interpretation of zero counts is different from hurdle models. Instead of assuming all zero
counts come from the same origin, zero-inflated models assume that zero counts are
generated from two distinct groups: the always-zero group contains only zero counts and the
not-always-zero group includes both zero and non-zero counts. For example, if the number
of occupational injuries occurred during the last month is the outcome, some people can only
score zero because they did not work in the last month. Other people who did work during
the last month may also score zero because they were not injured at work. Therefore, some
zeros come from people who can only score zeros (always-zero group); the other zeros are
reported by people who sometimes score zeros (not-always-zero group).

Zero-inflated Poisson (ZIP) model can be derived by modeling positive counts in the
not-always-zero group with a Poisson model. Its probability mass function has the form:

2298



Peng et al.; JSRR, Article no. JSRR.2014.17.004

pi + (1 —py) - exp(—p,) for y; =0

Ply;) = —u. ). Yi ) 8
(Y1) (1 _pi) exp( yk_llr) TR for y, >0 (8)

where U, = exp(X;B) is subject i's expected number of injuries given subject i is in the not-
always-zero group and p; is the probability of subject i from the always-zero group.
Specification of p; is done by a logit function

Log (%) =7V, 9)

Where Z; is a column vector of independent variables, ¥ is a column vector of estimated
coefficients [1,3].

Similarly, zero-inflated negative binomial (ZINB) model can be derived by modeling the not-
always-zero group with a negative binomial model. Its probability mass function has the form:

-1

-1
+(1—|C>i)'<_0'1 ) for y; =0
P(yi) = s . (10)
— N 1 a 1 i .
(1 pl) r( Vi +1)r‘(a—1) ((]—14_PI ) _1+H ) yi for yl > 0

where U; = eXp(X;B) is subject i's expected number of injuries given subject i is in the not-
always-zero group, « is the over-dispersion parameter and p; is the probability of subject i
from the always-zero group; Pj is specified by (9).

2. FORMULAS FOR CALCULATING ODDS RATIOS FROM THE ZINB MODEL
AND THE LOGISTIC REGRESSION MODEL

Consider a 30 year old White married person who is college educated, not poor, and has
medical insurance.

If he/she is disabled, probability of getting injured, YD > 0:

P(Y® > 0) = 1—P(YP = 0) = (1~ PP)- (1 — (B, + B,), where g00=(*s) .

—1peX
Probability of not getting injured, Y® =0:
P(YP = 0) = PP+ (1—PP)-g(B, +B,)

(1-PP)-(1-g(B,+B)))

Odds of getting injured for a disabled person = PP+ (1-PD) g8 7P’

where log (1 ED) =Z7y.
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If he/she is not disabled, probability of getting injured, YND>0:
P(YNP > 0) =1—-P(YN? = 0) = (1 —PP)- (1 - g(B,))
Probability of not getting injured, YND=0:

P(YNP = 0) = PP + (1 - PNP) - g(B,)

(1-PNP)-(1-g(Bo))

Odds of getting injured for a non-disabled person = PND 3 (1-PND) g(B, )’
0

where log (%;E—D) =Zyy.

Based on the estimated coefficients of ZINB model (see Appendix Table 1),
PP = PNP = 0.67764934, g(B, + B,)= 0.89209405, g(B,) = 0.96210191
Odds ratio of getting injured between disabled people and non-disabled people =
(1_PD)'(1_8(50+B1))
PD+(1-PD)g(By+By)
(1-PND)-(1-g(g,))

1-8(Bo+B4) 1-0.89209405
PD+(1-PD)-gB,+8;) _ 0.67764934+(1-0.67764934)-0.89209405
1-g(Bg) = 1-0.96210191 =2.91.

0.67764934+(1-0.67764934)-0.96210191
PND (1-pND) g(B,) ( )

Based on the estimated coefficients of logistic regression model (see Appendix Table 2),
odds ratio of getting injured between disabled people and non-disabled people = exp (1.10) =
3.

2300



Peng et al.; JSRR, Article no. JSRR.2014.17.004

Appendix Table 1. Estimated coefficients for the ZINB model with a single covariate
disability in the log linear part (P-value in parentheses)

Variable ZINB model coefficient estimates
Logit part’ Log linear part’

Constant 1.33* (.00) -3.23* (.00)

Age group 2 indicator variable 0.46* (.00) - --

(1 if aged at 30-54, 0 otherwise)

Age group 3 indicator variable 0.41* (.00) - --

(1 if aged at 55-64, 0 otherwise)

Marital status 2 indicator variable -0.42* (.00) - --

(1 if single/never married, O otherwise)

Marital status 3 indicator variable -0.75* (.00) - --

(1 if separated/divorced/widowed, 0 otherwise)

Race 2 indicator variable -0.96* (.00) - --

(1 if non-Hispanic White, 0 otherwise)

Race 3 indicator variable -0.47* (.00) - --

(1 if non-Hispanic Black, 0 otherwise)

Race 4 indicator variable -0.71* (.03) - --

(1 if other races, 0 otherwise)

College education indicator variable -0.43* (.00) - --

(1 if received college education, 0 otherwise)

Poverty status 2 indicator variable 0.38* (.00) - --

(1 if near poor, 0 otherwise)

Poverty status 3 indicator variable 0.34* (.00) - --

(1 if not poor, 0 otherwise)

Poverty status 4 indicator variable 0.83* (.00) - --

(1 if unknown, 0 otherwise)

Disability status indicator variable -- -- 1.13* (.00)

(1 if disabled, 0 otherwise)

Medical insurance coverage status -0.46* (.00) 0.30* (-00)

(1 if covered by medical insurance, 0 otherwise)

*indicates significant estimated coefficients (P<.05). ZINB, zero-inflated negative binomial; NHIS,
National Health Interview Survey
--indicates not applicable.

1. Log (ﬁ—;i) = Zl-'y.

2.p; = exp(X;p).

Appendix Table 2. Estimated coefficients for the logistic regression model with a
single covariate disability (P-value in parentheses)

Variable Logistic regression
coefficient estimates
Constant -4.21* (.00)

Disability status indicator variable (1 if disabled, 0 otherwise) 1.10* (.00)
*indicates significant estimated coefficients (P<.05). NHIS, National Health Interview Survey.
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