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Abstract
A novel method for the determination of rotary table errors with six degrees of freedom on
coordinate measuring machines and machine tools is introduced. The method is based on the
measurement of an uncalibrated circular ball plate in different rotational positions on the rotary
table, which is also referred to as the three-rosette method. The novel procedure allows the
number of measurement positions to be reduced significantly compared to the complete
three-rosette method, while the measurement uncertainty still remains sufficiently small. The
method relies on error separation and is self-calibrating, which means that no external reference
is required. The sophisticated design of a new ball plate allows rotary table errors to be
determined in angular steps of only 5◦.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Coordinate measuring machines (CMMs) are often equipped
with rotary tables which expand the machine’s kinematics to
include a fourth axis. This is beneficial for the measurement of
rotationally symmetric workpieces, as multi-stylus configura-
tions can be avoided. However, the additional axis introduces
further sources of errors that must be investigated before a
numerical correction or proper uncertainty analysis can be car-
ried out. A broad variety of methods are used for the measure-
ment of rotary table deviations. The position error crz, i.e. the
rotational error around the axis of rotation, is often meas-
ured using an autocollimator, while other errors can be detec-
ted by measuring the movement of spheres mounted in the
centre of the rotary table via displacement sensors [1–3]. In
[4], a method is proposed which allows the measurement of
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all six rotary table error components directly on the CMM or
machine tool by using a tracking interferometer and sequential
multilateration.

For the determination of machine errors, self-calibration
strategies based on error separation are favourable, as no
externally calibrated measurement standard is needed [5]. In
[6], a method is introduced which uses a simple and uncal-
ibrated cylindrical artefact to separate the rotary axis errors
from those of the linear axes. However, this method is only
capable of identifying two of the six error motion compon-
ents assigned to rotary axes. The procedure presented in [7]
uses the so-called three-rosette method applied to a circular
ball plate and provides all six error motion components. The
resolution of the errors obtained (i.e. the angular step size),
however, depends on the design of the ball plate. The ball plate
used in [7] is equipped with 12 equally distributed spheres
and therefore yields error motions with a step size of 30◦.
This may be unsatisfactory if the results are to be used, for
example, for compensation of gear measurements, as large
parts of the compensation data must be calculated by means of
interpolation [8, 9]. Putting more spheres on the circular ball
plate will improve the resolution but also increase the meas-
urement time and production costs for the artefact.
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The method presented in this paper builds on the procedure
from [7] combined with a reduced measurement effort and a
novel circular ball plate with a sophisticated design. The work
is inspired by [10], where the authors reported on a reduced
three-rosette method with one degree of freedom (DOF) for
pitch calibration of gears.

The paper starts with a description of the math-
ematical background of the three-rosette method with
six DOF in section 2. The design of the novel circu-
lar ball plate is presented in section 3. Section 4 intro-
duces the measurement setup used for validation and its
results are given in section 5. Section 6 concludes the
paper.

2. The three-rosette method with six DOF

Every measurement performed using a CMM with a rotary
table is influenced by deviations from the CMM’s linear axes,
by rotary table errors, and by the manufacturing errors of the
artefact to be measured. The principle on which the three-
rosette method is based is to separate these three error sources
from one another by means of measurements of an artefact
in multiple orientations. It should be noted that this tech-
nique is only capable of detecting systematic errors; hence,
stochastic errors (for example, those of the probing system)
should ideally be as small as possible. Moreover, the devi-
ations of some rotary tables are not 2π-periodic, as is typically
the case for rotary tables with rolling-element bearing. While
the three-rosette method can still be used to detect the rotary
table deviations using an adapted measurement strategy [8,
9], the results generally cannot be used for compensation pur-
poses, since the angular position of the rotary table is known
only modulo 2π. In this paper, it is assumed that the deviations
are periodic after one revolution, as is normally the case for
highly precise rotary tables with aerostatic bearings.

In [10], a reduced three-rosette method with one DOF was
presented to determine the pitch deviations of gears. The same
setup could, in principle, also be used to provide rotary table
errors. However, with this method, only the positioning error
crz can be detected, which is only one of the six rotary table
error motions.

The circular ball plate introduced in [7] is a simple artefact
that represents 3D positions on a divided circle. It is one of the
easiest to realise designs available which allows the complete
six DOF rotary table errors to be inspected. The measuring
procedure for the complete method is as follows: first, all the
balls are measured at the first position in the CMM by moving
them one by one into position with the rotary table. Then, the
CMMmoves one angular step (in this case given by the angu-
lar steps of the balls) to the second measuring position, and
again all balls are measured. The procedure is continued in
this way until every ball has been measured in all CMM pos-
itions. Figure 1 shows the measurement principle for a plate
with six balls.

In the reduced method, either the number of balls or the
number of CMM positions to be measured (or both) can be
decreased. In figure 1, reducing the number of balls would

Figure 1. Measurement principle of the complete three-rosette
method. In each row, the CMM position remains constant, whereas
in each column, the sphere to be measured stays the same.

mean removing some of the rows in the measurement pat-
tern, while reducing the CMM positions would mean remov-
ing some of the columns.

The three-rosette method with six DOF uses a model which
describes the results of the measurements of a ball plate on a
rotary table as a combination of the nominal coordinates and
the influence of the deviations of the rotary table, the CMM,
and the ball positions on the artefact, including clamping devi-
ations. By means of a least squares fit, these different devi-
ations can be separated from each other, thus allowing the
rotary table error motions to be obtained. It must be noted that,
since all lengths are measured with the CMM, a scale factor
of the linear axis will affect the results. However, the resulting
relative errors are very small and their influence on the rotary
table deviations can be neglected. Nevertheless, the method
does not provide a calibration of the size of the ball plate.

In the following, the model used to describe the influence of
the deviations on the measurement is explained. The coordin-
ate system is fixed to the CMM, with its z axis given by the
axis of rotation. The x and y axes are given by the correspond-
ing axes of the CMM. The z component of the origin is at the
height of the centres of the balls on the plate.

2.1. Rotary table deviations

A rotary table has six DOF: three translational deviations and
three rotational deviations. These deviations are measured at
N angular positions uniformly distributed over a complete
rotation.

If the nominal axis of rotation is parallel to the z axis of the
CMM, the translational deviations are denoted by ctxi,ctyi,ctzi
and the rotational deviations by crxi,cryi,crzi for each i =
0,1, . . . ,N− 1. These deviations are combined to form two
vectors

ci =

 crxi
cryi
crzi

 di =

 ctxi
ctyi
ctzi

 (1)

for each i = 0,1, . . . ,N− 1. A point fixed to the rotary table
which has the nominal coordinates p at zero position of the
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Figure 2. Left: The ball plate in the rotary table angle position φ= 0. The origin of the coordinate system is on the axis of rotation, the z
position given by the ball centre position. The position of ball zero lies on the positive x axis. Right: the ball plate is rotated by i angular
steps, i.e. the rotary table is in position φ = 2π

N · i. The ball with index j is then rotated to the position pi+j in the CMM,

error-free rotary table has the actual coordinates

p ′ = (I+ ĉi) ·Bi · p+ di (2)

at the angular position 2π
N i. Here, for x ∈ R3, ·̂ is defined by

x̂=

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 . (3)

Bi is the rotation around the z-axis given by

Bi =

 cos( 2πN i) −sin( 2πN i) 0

sin( 2πN i) cos( 2πN i) 0

0 0 1

 (4)

and I denotes the 3× 3 identity matrix.

2.2. Ball plate deviations

At the zero position of the ideal rotary table, the spheres on the
ball plate have the nominal centre point positions pj = Bj · p0,
where p0 = (ρ,0,0) is the position of the first ball and ρ is the
radius of the circle on which the sphere centres are located.
The deviations from the nominal positions pj are denoted by

aj =

 aj,x
aj,y
aj,z

 . (5)

These deviations are a superposition of the manufacturing
errors of the balls on the plate and of clamping errors of the
plate on the rotary table. The actual positions of the ball centre
point of ball j at the rotary table angular position i of the balls
are thus given by

(I+ ĉi) ·Bi · (pj+ aj)+ di. (6)

2.3. CMM deviations

Further let the systematic deviations of the CMM at the posi-
tions pk be given by

bk =

 bk,x
bk,y
bk,z

 (7)

for k= 0,1, . . . ,N− 1. Then, the actual position of the centre
point of ball j at the rotary table angular position i is obtained
by

(I+ ĉi) ·Bi · (pj+ aj)+ di + bi+j. (8)

2.4. Deviation of the coordinate system

Since the position and orientation of the rotary axis are not
known exactly, an additional transformation of the coordinate
system with rotation matrixU and transformation v ∈ R3 must
be taken into account. The actual position of ball j of the ball
plate at the angular position i of the rotary table is then given
by

U · [(I+ ĉi) ·Bi · (pj+ aj)+ di + bi+j] + v. (9)

Since the rotation U is close to the identity, it can be approx-
imated with U≈ I+ û with u ∈ R3. If the quadratic terms are
neglected, it follows that the measured position mij of ball j
of the ball plate at the angular position i of the rotary table is
given by

mij =pi+j+ ĉi · pi+j+Bi · aj
+ di + bi+j+ û · pi+j+ v. (10)

Figure 2 shows the ball plate and the resulting measurements
in start position and in rotated position together with the res-
ulting ball centre measurements mij.
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For the complete three-rosette method, where all N2 meas-
urements are available, themodel parameters aj,bk,ci,di,u and
v for i, j,k= 0,1, . . . ,N− 1 are estimated via a least squares fit,
that is, by minimizing the sum

N−1∑
i=0

N−1∑
j=0

∥pi+j+ ĉi · pi+j+Bi · aj+ di

+ bi+j+ û · pi+j+ v−mij∥2. (11)

For the reduced three-rosette method, measurements are
taken only for a selectionR⊆ {0,1, . . . ,N− 1} of R⩽ N balls
on the plate, or only for a selection S ⊆ {0,1, . . . ,N− 1} of
S⩽ N CMM positions (or both). To this end, the index k=
i+ j, which denotes the CMM position, is used instead of i.
This yields

mk−j,j = pk+ ĉk−jpk+Bk−jaj+ dk−j

+ bk+ ûpk+ v. (12)

The parameters are then obtained by minimizing the sum∑
j∈R

∑
k∈S

∥pk+ ĉk−jpk+Bk−jaj+ dk−j

+ bk+ ûpk+ v−mk−j,j∥2. (13)

Such a linear least-squares problem can be written as a matrix
equation

∥T · ξ − ζ∥2 →min, (14)

where ξ ∈ R3R+3S+6N+6 is the parameter vector consisting of
the variables a,b,c,d,u and v, T is the 3RS× (3R+ 3S+ 6N+
6)matrix describing the model, and ζ ∈ R3RS a vector contain-
ing the differences between themeasurements and the nominal
positions mk−j,j− pk.

However, in order to obtain a unique solution comparable to
results from other methods, some additional constraints must
be applied.

2.5. Constraints

• To set the coordinate system, the actual CMMpositions pk+
bk are optimally fitted to the nominal positions pk, for k ∈ S:

∑
k∈S

bk = 0,
∑
k∈S

pk× bk = 0. (15)

• To prevent a scaling of the coordinate system, the following
equation must be satisfied:∑

k∈S

ptkbk = 0. (16)

• The axis of rotation is chosen in such a way that the mean
values of the deviations are vanishing:

N−1∑
i=0

ci = 0,
N−1∑
i=0

di = 0. (17)

• To eliminate the effect of an inclination and shift of the ball
plate on the rotary table deviations, the following constraints
are applied:

N−1∑
i=0

Btici = 0,
N−1∑
i=0

Btidi = 0. (18)

Here, only the equations for the x and y components are rel-
evant; the equations for the z components of the rotary table
deviations are already included in the previous constraints.

• The deviations of the ball plate are calculated in such a way
that rotational deviations around the z axis and position devi-
ations in z direction are on average zero:

∑
j∈R

(
−sin

(
2π
N j

)
cos

(
2π
N j

)
0

0 0 1

)
aj = 0. (19)

For appropriate choices ofR and S, equation (14) together
with the constraints gives unique solutions for all parameters.
Reference is made to [10, 11] for some necessary conditions
for choices of the ball and CMM positions. However, in this
setting, appropriate choices may be defined by the requirement
that the matrix formed by the constrained linear system given
by equation (14) together with the above constraints must have
full rank. If the constraints are written as a matrix equation
G · ξ = 0 with a 19× (3R+ 3S+ 6N+ 6) matrix G, then the
solution can be calculated by(

T tT Gt

G 0

)(
ξ
λ

)
=

(
T tζ
0

)
(20)

with Lagrangian multiplier λ.
Uncertainties for all parameters can be derived from the

constrained linear least squares system. This follows several
well-known procedures as explained, for example, in [12]. The
covariance matrix for the calculated parameters is obtained by
V= σ2 ·V0, where the matrix V0 is given by(

V0 ∗
∗ ∗

)
=

(
T tT Gt

G 0

)−1

. (21)

Here, V0 denotes the upper left (3R+ 3S+ 6N+ 6)× (3R+
3S+ 6N+ 6) block of the matrix, while the other blocks are
not of interest and are denoted by ∗. The standard deviation σ
of a single ball centre measurement is estimated by σ2 = wtw

ν ,
with the residuals w= ζ −Tξ and the DOF ν. (If the standard
deviation of a single ball centre measurement can be estimated
by other, independent means such as knowledge of the meas-
urement capability of the CMM, then this value can also be
used.)

As in [10, 11], the uncertainties depend not only on the
number of measured balls and positions but also on the choice
of the positions. There is no (efficient) algorithm known by
the authors to determine which choice of positions will yield
smallest possible uncertainties. However, the principal aim is
simply to avoid choices which lead to especially high uncer-
tainties; this can easily be achieved by simply calculating the
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covariance matrix V for a preliminary assumed value of σ to
test a small set of positions.

It must be noted that the uncertainties given by the covari-
ance matrix are calculated based on the assumption that each
ball centre measurement is independently and identically nor-
mally distributed, that the assumed error model is completely
fulfilled, and that no other sources contribute to the measure-
ment uncertainty. Since this assumption in realistic situations
is never completely fulfilled, the measurement uncertainties
may be higher than the values obtained by means of the cov-
ariance matrix V.

3. Design of a new circular ball plate

For practical application, the situations in which either the
number of balls on the plate or the number of measured CMM
positions is reduced are of most interest. If the user already
has a ball plate with N balls on a regular angular grid, the
number of CMM positions could be reduced to some S<N
in order to also reduce the required measurements from N2

ball measurements to S ·N measurements. However, since in
this case N is the number of balls on the plate, N is typic-
ally a rather small number. The ball plate used in [7], for
example, has 12 balls and therefore allows the rotary table
deviations to be detected in steps of 30◦. Achieving a 5◦ resol-
ution for the rotary table deviations would require a ball plate
with 72 balls, which is not only expensive due to the large
number of highly precise spheres needed, but may be even
impossible to construct in such a way that plate and sphere
radii can be combined in a suitable way. It is therefore prefer-
able to reduce the number R of balls measured in such a way
that only a subset R= {j1, j2, . . . , jR} of all balls are meas-
ured, with R<N. If measurements are performed on all CMM
positions S = {0,1, . . . ,N− 1}, a necessary condition for the
unique solvability of equation (20) is given by

gcd( j2 − j1, j3 − j1, . . . , jR− j1,N) = 1, (22)

where gcd denotes the greatest common divisor. Of course,
this condition can easily be fulfilled, e.g. if j1 = 0 and j2 = 1.
However, it is not necessary to have two numbers jr and jr+1

with difference jr+1 − jr = 1. The condition is also fulfilled if
j1 = 0, j2 = 3 and j3 = 7, for example. This is important when
a suitable ball plate for the reduced method is designed, where
it might not be possible to mount two balls with the distance
of one step with respect to the underlying angular grid on the
plate.

If condition (22) is not fulfilled and the greatest common
divisor is some number µ⩾ 2, then the distance between any
two ball positions is a multiple of µ. Equation (13) splits then
into µ parts, so that deviations of the rotary table with a period
of µ can not be separated from the deviations of the CMM.

In case of the reduced three-rosette method for pitch calib-
rations, it can be shown that equation (22) is not only neces-
sary, but also sufficient for the unique solvability, see [10, 11]
for more details. In the present more complex situation of the
three-rosette method in six DOF, a proof of a similar result is
not known to the authors. However, the educated guess is that

Figure 3. The new circular ball plate mounted on a rotary table. It
can be seen that the spheres do not have uniform angular spacing.

condition (22) is necessary and sufficient for the solvability of
equation (20) in case R⩾ 5. If R⩽ 3, the error separation is
not possible for N>R, since there is not enough information
to calculate all unknowns. If R= 4, in some situations condi-
tion (22) is fulfilled, but the unique solvability of equation (20)
is still not given. In any case, for a given choiceR of positions
the unique solvability must be confirmed, e.g. by ensuring that
the matrix on the left hand side of equation (20) is invertible.

After an appropriate choice R of positions is found, a ball
plate with R balls at the angular positions 2π

N jr, r= 1, . . . ,R, is
necessary. Because of condition (22), in case that R<N the
balls can no longer be equally distributed on the plate. How-
ever, in general, it is not necessary to have two adjacent balls
with the angular difference of 2π

N ; thus, even for very large N,
the balls can be placed on the plate with sufficient space in
between them.

At PTB, a ball plate with the following properties was
designed and manufactured to measure rotary table deviations
in steps of 5◦:

• 12 balls are on a 5◦ angular grid, allowing the measurement
of the rotary table deviations in steps of 5◦. More precisely,
the balls are at the angular positions 0◦, 40◦, 60◦, 90◦, 105◦,
140◦, 160◦, 185◦, 210◦, 250◦, 290◦ and 310◦.

• 10 of the 12 balls are on a 10◦ angular grid, allowing rotary
table deviations to be measured in steps of 10◦.

• The positions of the 12 balls in the grid are optimized in such
a way that the plate is suitable for measurements of 6, 8, or
12 balls for the 5◦ steps, and for the measurement of 8 or 10
balls for the 10◦ steps.

Optimisation should not be understood here in a strict
mathematical sense. As mentioned before, the principal aim
is to avoid ball positions which lead to especially large
uncertainties.

Figure 3 shows the manufactured plate on a rotary table.
The outer diameter of the plate is 400 mm, while the balls are
located on a circle with a diameter of 370 mm. The precision
spheres have a diameter of 25 mm and roundness deviations
below 80 nm. The small form deviation of the spheres ensures
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Figure 4. The new circular ball plate measured on the rotary table of a large CMM.

Figure 5. Rotary table deviations. The blue lines (solid line with dots) show results of measurements with a ball plate with 12 equidistant
balls. The lines with the markers ◦ show the results with the new ball plate, measured in 5◦ steps. The lines with the marker ⋄ show the same
measurement with the new ball plate, but evaluated in 10◦ steps. The dashed lines again show the same measurement with the new ball
plate, but now only using the results of six balls for the evaluation.

that the calculated center is almost independent of the distri-
bution of the probing points on the sphere.

4. Measurements

To verify the reduced method, measurements with the newly
designed ball plate with 12 non-equidistant balls on the 5◦

angular grid were compared to measurements with the ball
plate with 12 equidistant balls. The measurements were per-
formed on a large CMMwith a working volume of 5 m× 4 m
× 2 m and a rotary table with a diameter of 1 m (figure 4). The
balls were measured with 15 points distributed on the upper

half of the sphere. It should be noted that about one year passed
in between the measurements with the complete and reduced
ball plates.

5. Results

The results of the measurements are shown in figure 5. The
measurements in 5◦ steps were performed with the new ball
plate with the 12 non-equidistant balls. This can be com-
pared with the measurements in 30◦ steps at the corresponding
angular positions. The results of the two measurements show
good agreement. It can be further seen that the higher

6
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resolution significantly increases the information obtained for
the rotary table. The measurement with the new ball plate was
additionally evaluated using only the measurements of 6 of the
12 balls. The results show good agreement with the evaluation
using the data from all 12 balls. Therefore, it may be sufficient
to measure only 6 balls instead of 12. The same measurement
of the new ball plate was also evaluated in 10◦ steps. Here, only
the measurements of 10 balls and of 36 CMM positions were
used. The difference to the measurements with the 5◦ steps is
not significant for the rotary table investigated in this study.
Therefore, it may also be an option to measure only the 10◦

steps for future measurements of this particular rotary table.
However, the situation may be different for other rotary tables.

The expanded uncertainty (k= 2) for the single ball cen-
ter measurements calculated via the residuals from the least
squares fit yields 0.1 µm. This leads to uncertainties for
the rotary table deviations calculated from the covariance
matrix of about 0.03 µm for the translational deviations,
about 0.23 µrad for the rotational deviations crx and cry, and
0.16 µrad for the positioning deviation crz. The actual uncer-
tainties may be higher, since additional effects such as tem-
perature induced drift are not included in the calculation. The
differences between the measurements with the new and old
ball plates are smaller than 0.1 µm for the linear errors, and
smaller than 0.5 µrad for the rotational errors. This suggests
that the uncertainties are about twice as large as the values
given above.

6. Conclusions and outlook

The easy-to-use three-rosette method measures the deviations
of rotary tables of CMMs directly at the location of use
of the CMM. This method only requires an uncalibrated
ball plate as additional equipment. Since it is an error sep-
aration method, the results of the three-rosette method are
not affected by systematic errors of the linear axes of the
CMM.

For the application of the reduced three-rosette method, a
new ball plate was designed and manufactured to allow meas-
urements of the rotary table errors in steps of 5◦. When meas-
uring all 12 balls on the plate, the measurement effort is six
times lower than it would be using the complete three-rosette
method (using a plate with 72 balls). It is possible to further
reduce the measurement effort by (for example) measuring
only six balls on the plate with only slightly increased meas-
urement uncertainties.

The measurements performed with the new ball plate for
the reduced three-rosette method on several CMMs show good
agreement with previous full-method measurements taken
with the old ball plate at common 30◦ angular grid points.
Ongoing work undertaken together with a manufacturer of
rotary tables concerns comparison with alternative measure-
ment methods. As for the complete method described in [7],
good agreement has already been achieved for the position
error crz.

Futureworkwill also focus on the application of themethod
to machine tools.
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