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Abstract
Accurate measurements in dimensional metrology necessitate strict controls on spatial and
temporal variations in the measurement room temperature. Due to limitations in the number of
sensors that can be placed in a given room, interpolation methods that leverage information
from multiple sensors are necessary to assess conditions at unsampled locations. In this
contribution, Kriging is used to spatially interpolate room temperatures from a limited number
of sensors with different measurement uncertainties in a temperature controlled room housing
two coordinate measurement machines. A novel method to propagate sensor uncertainties to the
interpolated values using a Monte Carlo simulation is also demonstrated. The uncertainty
propagation is considered for the explicitly heteroskedastic, i.e. a constituent network of sensors
with different measurement uncertainties. The influence of a localized disturbance in the form
of a movable heating element in the room is also investigated.

Keywords: sensor networks, interpolation, measurement uncertainty, Kriging, temperature,
Monte Carlo simulation

(Some figures may appear in colour only in the online journal)

1. Introduction

The rapid growth of automation in manufacturing brought
about by a widespread adoption of interconnected cyber-
physical systems and large-scale sensor networks, often
bolstered using machine learning methods, is a key aspect
of the industrial internet of things, or IIoT, paradigm [1].
The unique set of challenges posed by the aforementioned
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developments are intimately connected to the goals of inter-
operability and decentralization which are central to the ongo-
ing fourth industrial revolution or Industry 4.0 [2, 3]. The
use of sensor networks presents both unique advantages and
challenges due to their versatility [4]. At the forefront of
these challenges is the generation of a large amount of data
which in turn necessitates the use of methods to optimally use
the resulting information. Often, a form of sensor fusion [5]
must be employed to combine measurement results from dis-
parate sensors. By consolidating multi-sensor information in
this way, insights otherwise unavailable to individual sensors
become accessible. A key application of multi-sensor informa-
tion is the interpolation of sensor data to estimate the value of a
physical property at unsampled locations given a finite number
of sensors placed at discrete locations [6]. In this contribution
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a method for estimating the room temperature using Kriging is
presented along with a Monte Carlo based method to estimate
the associated measurement uncertainty. The sensor readings
correspond to climate-controlledmeasurement rooms for large
coordinate measuring machines (CMMs) that must conform to
strict temperature requirements in order to ensure the accuracy
of their measurement results.

1.1. Motivation

Dimensional metrology is a subbranch of metrology that deals
with the measurement and quantification of physical size,
shape and distance and the development of methods to aid in
this endeavor. CMMs are devices that measure the geomet-
rical properties of an object by means of probes that sense dis-
crete points on its surface [7]. CMMs are required to provide
highly precise coordinate measurements and in turn subject
their measuring rooms to very stringent requirements with
respect to temperature variations both across the dimensions
of the room as well as in time in order to ensure the accuracy
of their measurement results (see, for instance, [8]). In previ-
ous work [9], the interpolation of temperatures for the walls of
cold-storage rooms and transport containers yielded promising
results withKriging in comparison to other interpolationmeth-
ods. Kriging has also been successfully used for temperature
interpolation in meteorological contexts [10, 11]. In contrast,
readings in measurement rooms have to be taken with high
accuracy in all three spatial dimensions and, consequently,
require a good control of temperature variations in all direc-
tions. For reasons of practicality as well as cost, only a limited
number of sensors can be placed in the room at a given time. As
a result, it becomes necessary to provide accurate estimates for
the temperature at locations without nearby sensors. Typically
this is achieved using appropriate interpolation methods and
in turn necessitates an estimation of the uncertainty associated
with the interpolated value in order to quantify its trustworthi-
ness. In contrast to deterministic interpolation methods such
as splines, Kriging provides the best linear unbiased estimator
[12] for an interpolated value as a linear combination of the
known interpolation points based on a prior covariance. As
a result, the interpolated value takes the form of a random
variable with an associated mean and variance. The relation
of this variance to the measurement uncertainty is, however,
unclear. The aim of the present work is therefore to demon-
strate the applicability of Kriging to 3d interpolation in meas-
urement rooms and to propose a method to compute an uncer-
tainty for the interpolated values consistent with metrological
principles.

2. Use case

The system under study is that of a network of 24 Pt100
platinum resistance thermometers which used to monitor
the temperature in a cuboidal measuring room of dimen-
sions 7.51m× 4.26m× 2.9m. The sensors are essential to

minimize errors arising from the expansion or contraction of
materials due to temperature changes [13]. As illustrated in
figure 1, the positioning of the aforementioned sensors is dic-
tated by the presence of essential measuring instruments with
fixed locations. The floor positions of the CONTURA CMM
and the RONDCOM form tester are also indicated in the figure
along with that of the PC housed in the measuring room. The
readings of the main group of 24 sensors were recorded at a
rate of roughly once every 180 s over a period of 130 d from
9 June 2022 to 17 October 2022 resulting in 62 335 temperat-
ure measurements for each of the 24 measuring room sensors.
The individual readings along with the respective hourly and
daily moving average temperatures are plotted for the entire
measurement period in figure 2. An increase in measured val-
ues corresponding to higher ambient temperatures in the hotter
months of July and August can be clearly seen. A sample from
the temperature dataset corresponding to the 200th time point
is shown in table 1.

2.1. Heating element

In addition to the 24 sensors which are considered as main
constituents of the measurement setup, the room was also
provided with a heating element and two additional temper-
ature sensors placed on a movable trolley starting on 29 July
2022. The heating element, which was placed on a mov-
able trolley along with two temperature sensors as shown in
figure 3, is used to assess the influence of localized sources
of disturbances in the measurement room. The first of these
sensors is placed directly under the element, while the second
sensor is attached to the trolley at a distance of 10 cm from the
heating element.

The trolley along with the heating element was placed in
three different positions (1, 2 & 3) as illustrated in figure 1 on
the floor of the measurement room and the heating element
was switched on continuously for three distinct periods given
by

(i) 14:10 on 29 July 2022 to 11:00 on 9 August 2022,
(ii) 09:15 on 17August 2022 to 14:45 on 23August 2022 and,
(iii) 14:50 on 9 September 2022 to 09:15 on 14 October 2022.

The trolley setup is present in the room between and outside
the aforementioned intervals, although the heating element is
switched off. After the heating element has been switched off,
the trolley remains in its current position and is moved to its
new location shortly before the element is switched on again.
Starting on 29 July 2022, both the sensors also record tem-
peratures every three minutes, such that Sensor 25 provides
38 375 and Sensor 26 provides 38 365 measurements respect-
ively. The difference in the number of readings between the
two sensors is due to a small delay in recording the temperat-
ure values from Sensor 26 and has a negligible effect on the
present study. The temperature readings of the two sensors,
denoted by Sensor 25 and Sensor 26 are depicted in figure 4.
The sensor placed directly on the heating element (Sensor
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Figure 1. The distribution of sensors in the measurement room under consideration. Half the sensors are situated at a height of 55 cm above
the floor, while the other half is directly above at a height of 2.55m. The position of the coordinate measuring machine (CMM) CONTURA
along with the RONDCOM form tester and the PC used for the measurement setup. The size of each sensor has been exaggerated for
convenience. The different positions of the heating element and one of its accompanying sensors (blue circle) are also indicated.

Figure 2. The raw temperature readings from the 24 sensors over the entire 70 d period along with the corresponding hourly and daily
rolling averages.

Table 1. Chosen sensor readings; cf figure 1 for sensor labels.

Sensor 01 02 03 04 05 06
Reading (◦C) 21.81 21.43 21.72 21.35 21.59 21.65
Sensor 07 08 09 10 11 12
Reading (◦C) 21.85 21.36 21.87 21.31 21.54 21.29
Sensor 13 14 15 16 17 18
Reading (◦C) 21.80 21.48 21.72 21.74 21.87 21.98
Sensor 19 20 21 22 23 24
Reading (◦C) 22.07 22.05 22.00 21.95 22.01 22.05

25) records a temperature of roughly 76.6 ◦C when the heat-
ing element is active. The main purpose served by Sensor 25
is to clearly demarcate the periods during which the heating

element is active (or switched on). Sensor 26, on the other
hand, will later play a more central role in assessing the inter-
polation model.

3



Meas. Sci. Technol. 34 (2023) 064007 A P Vedurmudi et al

Figure 3. The setup of the heating element on its trolley along with its attached temperature sensors in the three positions depicted in
figure 1. The nearby sensors (Sensors 02, 04, 12 & 14) corresponding to the room setup (see figure 1) for the different positions of the
trolley as well as the temperature of the sensor affixed to the trolley (Sensor 26) and the sensor directly attached to the heating element
(Sensor 25) the are also indicated.

Figure 4. The readings of the temperature sensors (25 & 26) placed
on the trolley shown in figure 3. The time periods during which the
heating element is switched on and the corresponding positions of
the setup has also been indicated in the plot.

3. Methods

The present section presents a brief overview of ordinary Kri-
ging and it is applicability and limitations with respect to the
problem of interpolating temperatures in measurement rooms,
particularly with respect to the heteroscedastic case.

3.1. Ordinary Kriging

Kriging [14] is a spatial interpolation technique based on
Gaussian processes with origins in geostatistics that, given a
finite number of samples, provides predictions for the value of
a function at unsampled locations under appropriate assump-
tions about the mean and covariance of the underlying process.
Different variations of Kriging are possible with respect to the
chosen constraints on the mean and variance of the underly-
ing process. For instance, while simple and ordinary Kriging
assume a known and unknown mean respectively, universal
Kriging assumes a general polynomial trend. As no a priori
knowledge about the temperature variation with time can be

assumed, the mean is taken to be unknown. Furthermore, we
assume no knowledge of the underlying physical processes
governing the room temperature. As a result, we use ordinary
Kriging to determine the temperature at the unsampled points
in the room.

Given N observed values (for e.g. sensor readings)
{T1,T2, . . . ,TN} at known locations {x1,x2, . . . ,xN}, the pre-
diction T̂0 at a point x0 obtained via ordinary Kriging is given
by

T̂0 =
N∑
n=1

wnTn = wTT , (1)

with

wT1=
∑

wn = 1 (2)

so as to satisfy the unbiasedness condition. The Kriging estim-
ate is determined by minimizing the expected value of the
estimation error ϵ(x0)

σ2
ϵ = E[ϵ(x0)] = E[|T0 − T̂0|2] , (3)

where T0 is the true value at x0 and σϵ is referred to as the
Kriging variance. The above equation can be rewritten as

σ2
ϵ = Varsp(T0)+wTCw− 2wTD , (4)

where Cij = Cov(xi,xj) is the covariance matrix correspond-
ing to the known samples, Di = Cov(xi,x0) a vector whose
values are the covariances between the observed values and
the function value to be estimated at x0 and Varsp(T0) =
Cov(x0,x0) the spatial covariance of the T0. The coefficients
w that minimize the Kriging variance σϵ under the constraint
of unbiasedness (2) are the solution of the ordinary Kriging
system and are given by [15]

w= C−1[D−λ1] , (5)

where λ=
1TC−1D− 1
1TC−11

. (6)
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The minimal ordinary Kriging variance is given by

min(σ2
ϵ) =: σ2

OK = Varsp(T0)−wTD−λ . (7)

The final step is to select an appropriate prior covariance func-
tion Cov(xi,xj) in order to determine C and D. Typically, the
underlying process is assumed to be wide-sense stationary,
i.e. Cov(xi,xj) = Cov(|xi− xj|), or the covariance between the
values at two points only depends on their distance and that
the mean of the underlying process is constant. As a result, the
variance Var(T0) is given by the value of the spatial covariance
at distance 0, so that equation (7) can be rewritten as

σ2
OK = C00 −wTD−λ . (8)

The covariance function is chosen such that nearby points have
a stronger correlation. The covariance is estimated using the
variogram γ, which is related to the spatial covariance by

γ(h) = Var(T(x+h)−T(x)) = Cov(0)−Cov(h) (9)

and corresponds to the variance of the difference between val-
ues separated by a distance h. The variogram is approximated
from the sampled values by fitting a chosen function to the
empirical variogram

γ(h) =
1

2|N(h)|
∑

(i,j)∈N(h)

(T(xi)−T(xj))
2
, (10)

where N(h) denotes the set of all samples located at a dis-
tance h away from each other within a given tolerance. The
discrete values of γ(h) are binned and fitted to a parametric
variogram function. Common choices for such a function are
linear, Gaussian, exponential and spherical.

3.2. Kriging variance and measurement uncertainty

As the variogram and consequently the covariance is fitted
directly to the current observed values or the sensor read-
ings, the effect of the individual sensor measurement uncer-
tainty determined from its calibration on the reliability of the
interpolated value is not directly taken into account. While
the Kriging variance is a reasonable first measure of the reli-
ability of the interpolation, it is an incomplete measure of
uncertainty from a metrological standpoint and cannot, by
itself, be interpreted as such. A reliability statement obtained
by propagating the known uncertainties of all sensors used
to determine the kriged estimates to the interpolated values
would, however, complement the Kriging variance. In prin-
ciple, the sensor measurement uncertainty can be incorporated
in the variogram (9) via the nugget effect, i.e. a discontinuity
in γ at h= 0. For, example, an exponential variogram model
is given by

γ(h) =

{
0 for h = 0

c0 + cexp(−3h/R) for h > 0
. (11)

The parameters c0 c and R are determined by fitting the
above function to the empirical variogram (10) such that

Cov= c0 + c is the measurement uncertainty. The value of
the variogram at h→ 0+, i.e. γ = c0 + c is referred to as the
nugget and the value at h→∞ is referred to as the sill.
The value of c0 c and R is determined by fitting the chosen
variogram model to the empirical variogram described in the
preceding section; cf (10). Heuristic methods to incorporate
the individual sensor uncertainties in the nugget effect by
imposing γ(0) = u0, where all measured points have the same
uncertainty u0, have been implemented [16, 17]. These meth-
ods however do not conform with the standards for uncer-
tainty propagation put forth by the guide to the expression of
uncertainty in measurement (GUM) [18] and moreover cannot
account for the case where the sampled locations have differ-
ent associated uncertainties, i.e. for the heteroscedastic case.
As a result, the measurement uncertainty for the interpolated
values has to be estimated using other means.

3.3. Uncertainty propagation

The GUM prescribes methods for the expression of uncer-
tainty for the measurement of physical quantities and for the
propagation of uncertainty to quantities expressed using math-
ematical models applied to physically measured values. For a
quantity y= f(x1,x2, . . . ,xN) expressed as a function ofN input
quantities x1,x2, . . . ,xN, the “combined” standard uncertainty
uc(y) associated with y is given up to second order in u2(xi) by
using the Taylor series expansion of f such that,

u2c(y) =
N∑
i=1

(
∂f
∂xi

)2

u2(xi)+
N∑
i ̸=j

(
∂f
∂xi

∂f
∂xj

)
u(xi,xj)

+

N∑
i=1

N∑
j=1

[
1
2

(
∂2f

∂xi∂xj

)2

+
∂f
∂x2i

∂3f
∂xi∂x2j

]
u2(xi)u

2(xj) ,

(12)

where u(xi) is the standard uncertainty associated with the
quantity xi and u(xi,xj) is the covariance of the quantities xi
and xj. In the absence of significant nonlinearities in f and
small uncertainties in xi, the first order term is sufficient to
express the uncertainty in y and in the case of uncorrelated
inputs, u(xi,xj) vanishes.

In the context of interpolation using Kriging, the independ-
ent measured quantities correspond to the temperature sensor
readings in the measurement room and their corresponding
standard uncertainties are obtained from the appropriate tech-
nical specifications. The task at hand is, therefore, to propagate
the aforementioned uncertainties to the interpolated temperat-
ures at each point in the grid. Although the interpolated values
are, at first glance (cf equation (1)), linear combinations of the
sensor readings, it must be remembered that the coefficients
themselves are determined from the individual measurements
(see equations (4)–(6)). In other words, the Kriging model is
inherently nonlinear in the measured values. Moreover, due
to increasing complexity of the model with the number of
measurements, uncertainty propagation by means of comput-
ing the derivatives as shown in equation (12) is no longer
practical.
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3.3.1. Monte Carlo uncertainty estimation. For cases such
as the aforementioned, an estimated of the propagated
measurement uncertainties can be obtained by using theMonte
Carlo method in accordance with the first supplement of GUM
[19]. Instead of computing the propagated uncertainty uc(y) by
computing the Taylor series expansion of y= f(x1,x2, . . . ,xN)
(12), random perturbations of the measurands x1,x2, . . . ,xN are
generated as samples from a multivariate normal distribution
X∼N (x,C), where

x= (x1,x2, . . . ,xN) and (13)

C = diag(u(x1),u(x2), . . . ,u(xN)) (14)

are, respectively, the mean and covariance of the aforemen-
tioned multivariate normal distribution and u(xi) is the known
measurement uncertainty of the measurand xi. This is repeated
for multiple iterations or trials such that for a given trial i, the
value of the function f for a sample x̃i ∼N (x,C) drawn from
the multivariate normal distribution N is given by

ỹi = f(x̃i) = f(x̃i1, x̃
i
2, . . . , x̃

i
N) . (15)

The (unbiased) mean and variance of y afterNtrials Monte Carlo
trials is then calculated as

ỹMC =
1

Ntrials

Ntrials∑
i=1

ỹi (16)

u2MC(y) =
1

Ntrials − 1

Ntrials∑
i=1

(ỹi− ỹMC)
2 . (17)

In the present case of interpolation using Kriging, the function
f corresponds to using the known temperature readings T i to
determine the interpolated temperature T̂0 at a given point in
the measuring room (cf equation (1)). However, as shown in
section 3.1 Kriging also provides an estimate for the reliability
of the interpolated value in the form of a Kriging variance (8).
The mean and variance of the Kriging variance σ2

OK can itself
be determined in an analogous way to the Monte Carlo estim-
ation of the mean and variance of the interpolated temperature
in equations (16) and (17).

3.3.2. Total variance as measurement uncertainty. In order
to obtain a meaningful value for the propagated measurement
uncertainty for the kriged estimate of the room temperature, it
is necessary to incorporate the Kriging variance into the meas-
urement uncertainty determined from calibration. Following
the derivation in section 3.1, we argue that for a given set of
sensor readings, the estimates for the mean and variance of
the interpolated temperature are, in effect, a conditional mean
and variance given a particular set of sensor measurements and
appropriate assumptions about the spatial variance represented
by the variogram. In other words, the Kriging mean and vari-
ance (see equations (1) and (4)) can expressed as

T̂0 = wTT̃= E
[
T0|T̃= (T̃1, T̃2, . . . , T̃N)

]
and (18)

Table 2. Sensor coordinates (in meters) according to the chosen
reference frame; see figure 1 for sensor labels.

Sensor 01 Sensor 02 Sensor 03 Sensor 04
(2.37, 0.05,
2.55)

(2.37, 0.05,
0.55)

(1.4, 0.05,
2.55)

(1.4, 0.05,
0.55)

Sensor 05 Sensor 06 Sensor 07 Sensor 08
(0.0, 0.05,
2.55)

(0.0, 0.05,
0.55)

(0.0, 2.05,
2.55)

(0.0, 2.05,
0.55)

Sensor 09 Sensor 10 Sensor 11 Sensor 12
(0.0, 3.18,
2.55)

(0.0, 3.18,
0.55)

(1.1, 3.18,
2.55)

(1.1, 3.18,
0.55)

Sensor 13 Sensor 14 Sensor 15 Sensor 16
(2.43, 3.18,
2.55)

(2.43, 3.18,
0.55)

(2.37, 2.05,
2.55)

(2.37, 2.05,
0.55)

Sensor 17 Sensor 18 Sensor 19 Sensor 20
(4.36, 3.18,
2.55)

(4.36, 3.18,
0.55)

(6.26, 3.18,
2.55)

(6.26, 3.18,
0.55)

Sensor 21 Sensor 22 Sensor 23 Sensor 24
(6.26, 1.86,
2.55)

(6.26, 1.86,
0.55)

(6.26, 0.05,
2.55)

(6.26, 0.05,
0.55)

σ2
OK = Var

(
T0|T̃= (T̃1, T̃2, . . . , T̃N

)
. (19)

The variance of T̂0 or, equivalently, its uncertainty u2MC(T0)
can be estimated using the Monte Carlo method outlined in
equations (13)–(17) by drawing samples T̃ from a multivariate
normal distribution N (T,C). The mean value of σ2

OK can be
estimated in a similar manner. These two values can now be
combined using the law of total variance [20, p 222] such that,

Var(T0) = E [Var(T0|T)]+Var(E[T0|T]) . (20)

The two terms on the right-hand side respectively correspond
to the unexplained and explained components of the vari-
ance. In doing so, we have combined the inherent random-
ness arising from the measurement uncertainty of each sensor
with the spatial variation arising from our lack of knowledge
about the temperature distribution in the measuring room. In
contrast to inserting the measurement uncertainty as part of
the nugget effect, the present method supports the heteros-
cedastic case as no restrictions are placed on the individual
sensor uncertainties.

3.4. Implementation details

The coordinate reference frame was chosen such that floor of
the bottom left corner in figure 1 corresponds to the origin
(0,0,0). The coordinates of the 24 fixed sensors in our conven-
tion is given in table 2. The positions of sensor 25 (attached to
the heating element) and sensor 26 on the three time intervals
specified in section 2.1 are provided in table 3. The analysis
of the temperature data and the numerical interpolation was
carried out using the Python programming language. In par-
ticular, the tasks directly related to Kriging such as the gen-
eration of the variogram, the estimation of the kriged values
as well as the Kriging variances were implemented using the
PyKrige [21] library. In particular the OrdinaryKriging3D
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Table 3. Coordinates (in meters) according to the chosen reference
frame of the movable sensors attached to the heating element and
trolley; see figures 1 and 3 for sensor labels.

Sensor 25 Sensor 26

Position 1 (1.76, 3.18, 0.55) (1.76, 3.08, 0.55)
Position 2 (5.61, 3.18, 0.55) (5.61, 3.28, 2.55)
Position 3 (2.37, 1.05, 0.55) (2.37, 1.15, 2.55)

class is used to fit a Gaussian variogram to the empirical vari-
ogram (10) from the 24 sensor outputs at a given point in time.
The kriged values and the resulting variances were estimated
on a grid of size 30× 17× 12 defined in the volume illustrated
in figure 1. The grid-size was chosen to ensure a nearly equal
resolution in all three directions.

3.4.1. Monte Carlo implementation. In each trial, a random
sample is drawn from the distribution modeling the uncer-
tainty knowledge about the 24 sensor readings. To do so, a
multivariate normally distributed random variable with zero
mean is used whose covariance is determined from the stand-
ard uncertainty of the individual sensors. In reality, the sensors
used in the setup are identical and have a measurement uncer-
tainty of 100mK. In order to demonstrate the propagation of
uncertainty for the heteroscedastic case, we assume that three
out of the 24 sensors have a lower uncertainty. In particular
Sensors 16 and 20 are assigned a measurement uncertainty of
25mK, while Sensor 6 is assumed to have an uncertainty of
50mK (cf figure 1 for sensor placement). As a result, the mul-
tivariate normal distribution has a covariance represented by
the 24× 24 diagonal matrix

Covsensors =


0.12

0.12

. . .
0.12

 (21)

Cov16,16sensors = Cov20,20sensors = .0252 (22)

Cov6,6sensors = .052. (23)

The sample drawn from the aforementioned distribution is
added to the sensor readings provided in table 1, which
serve as the mean of the normal distribution. These val-
ues are then used in a single Monte Carlo trial to initialize
an OrdinaryKriging3D object with the sensor positions as
parameters and the interpolated temperatures are calculated on
the 30× 17× 12 grid corresponding to the measuring region.
These steps are repeated for Ntrials = 104 trials to estimate the
mean and variance of the temperature as well as the mean
of the Kriging variance at each point in the grid over all
trials. A pseudocode for the Monte Carlo trials is provided
in algorithm 1. The execution of the above algorithm on a
Jupyter notebook with an IPython kernel (version 7.31.0) and
Python 3.8 interpreter took approximately 4min. The simula-
tions were performed on a work laptop with a quad core pro-
cessor with base frequency 2.20GHz and 16GB of RAM.

Algorithm 1. Monte Carlo trials to propagate the sensor uncer-
tainty to the volume grid.

1 Tmean← Zeros(30, 17, 12);
2 varcond← Zeros(30, 17, 12);
3 vartot← Zeros(30, 17, 12);
4 for i← 1 to Ntrials do
5 [T̃1, . . .T̃24]← [T1, . . .T24] +N (0,Covsensors);
6 OK3D← OrdinaryKriging3D([x1, . . .x24], [T̃1, . . .T̃24]);
7 Tkrig, σ

2
krig← OK3D(Xgrid, Ygrid, Zgrid);

8 Tmean← Tmean + Tkrig;
9 varcond← varcond + T2krig;
10 vartot← vartot + σ2

krig;
11 end
12 varcond←

(
varcond− T2mean/Ntrials

)
/(Ntrials− 1);

13 vartot← varcond+vartot/Ntrials;
14 Tmean← Tmean/Ntrials;

4. Results

In our subsequent analysis, the exponential variogram will be
used to perform the Kriging interpolation. In general, no sig-
nificant effect on the interpolated values was observed upon
using Gaussian or spherical variograms. However, the expo-
nential variogram was chosen due to its relatively straight-
forward functional form and as it leads to a better illustration
of the uncertainty propagation.

4.1. Interpolated temperature

The interpolated temperature across the volume of the meas-
urement room is illustrated for six different cases in figures 5
and 6 for sensor readings taken at midday, i.e. 12 PM. In the
former set of three figures, the values were chosen to represent
three of the colder days from the dataset under consideration,
while the latter shows interpolated temperatures for three of
the warmer days. The two sets of examples were chosen to
increase the clarity of the illustrations, given the differences
in their temperature scales. In both cases a region of higher
temperature is observed at the bottom right corner of the grid,
consistent with the presence of the PC in the same location (cf
figure 1). This effect is most pronounced on the colder day
of 5 October, as the effect of the heat emanating from the
PC is significant compared to the effect of the ambient tem-
perature. Moreover, the heating element is located at Position
3 on the aforementioned date (see section 2.1) and a slightly
higher interpolated temperature can be observed at its position.
The trolley supporting the heating element with the attached
sensors is not present in the room at the time of the first two
cases, i.e. on 10 June and 1 July 2022. In contrast to the colder
days, the temperature on the warmer days is more significantly
influenced by the ambient summer temperatures than by the
heat emitted by the PC. The heating element is switched on
and located at positions 1 and 2 for the first two cases on 3
and 20 August, while it is switched off at position 2 for the
third case, i.e. on 1 September. In all cases, the variation of
temperature in the room is small due to the constantly run-
ning air-conditioning system and the interpolated temperature
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Figure 5. The interpolated room temperatures for three representative colder days from the dataset under consideration. The positions and
corresponding temperature readings of the sensors are also indicated.

Figure 6. The interpolated room temperatures for three representative warmer days from the dataset under consideration. The positions and
corresponding temperature readings of the sensors are also indicated.

at a point is most strongly determined by that of the nearest
sensor.

4.1.1. Effect of the heating element. In order to assess
the performance the Kriging interpolation model at locations
without sensors, the temperature determined at the physical
location of Sensor 26 attached to the movable trolley is com-
pared with the temperature reading shown by the sensor itself.
In figure 7, the interpolated temperature is plotted against the
reading of Sensor 26 for all three positions of the trolley, both
when the heating element is switched on and off. For reference,
the reading of Sensor 26 is also plotted alongside the interpol-
ated value at its location for the entire duration of data col-
lection. The sensor measurements corresponding to the time
period before the heating element was placed in the measure-
ment room have been excluded. The interpolated temperature
values show a good agreement with the readings from Sensor
26 when the heating element is switched off, while measured
temperatures are marginally higher when the element is active.
A possible reason for this is that the abrupt increase in tem-
perature in the vicinity of the active heating element requires

a higher sensor-density in order to be accurately represented
by the model. Note that our dataset does not contain readings
from the sensors when the heating element is located in pos-
ition 3 while inactive. The RMS deviation of the interpolated
value from the reading of sensor 26 is provided in table 4. It
can be seen that the deviation of the interpolated value from the
measured one is higher when the heating element is on com-
pared to when it is off. In particular, the deviation in Position
1 is higher by a factor of 8, while that in Position 2 is higher
by a factor of 6.

4.2. Propagated uncertainty

The convergence of the mean interpolated temperature as well
as the variance of the interpolated temperature at the loca-
tions of the 24 sensors determined using Kriging, as a func-
tion of the number of Monte Carlo trials, Ntrials, is illustrated
in figure 8 for up to Ntrials = 10000. We see that, the empir-
ical mean interpolated temperature determined using Kriging
at the locations of sensors converges to the sensor readings
while the empirical variance of the interpolated temperatures
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Figure 7. Left: interpolated temperature at the location of Sensor 26 plotted against the sensor reading itself. The different colors
correspond to the different positions of the heating element, while the shapes correspond to whether the element was switched on or off.
Right: the reading of Sensor 26 alongside the interpolated value determined using Kriging for the entire duration of data collection.

Table 4. Average deviation of the interpolated temperature from the reading of Sensor 26 for both states of the heating element.

Position 1 Position 2 Position 3

On .72K .62K .55K
Off .09K 0.10K —

Figure 8. The convergence of the mean interpolated temperatures (left) and standard deviations (right) determined using the Monte Carlo
method. The solid lines denote the results of the Monte Carlo simulation, while the dotted lines correspond to the sensor readings and
uncertainties.

converges to the individual sensor uncertainties. The conver-
gence of the mean values is significantly faster (within 1%
of the true values after 1000 trials) than that of the variances
(within 1% of the true values after 10 000 trials for sensors
with a higher uncertainty).

The variation of the propagated uncertainty determined
using the Monte Carlo approach presented in section 3.3.1
for the 200th datapoint (see table 1) across the volume of
the measurement room is illustrated in figure 9. The compon-
ents used in determining the total standard deviation as pro-
posed in section 3.3.1 (see equations (13)–(20)) have also been
provided. At locations with a relatively low sensor density, for
instance in the center of the room between the RONDCOM
and CONTURA devices, a region of high uncertainty can be
observed both for the total standard deviation as well as for
the variance of the Kriging mean. Similarly, a region of high

uncertainty is also evident at the right side of the room, i.e. at
the wall corresponding to x= 7.51m—a regionwith no nearby
sensors. In contrast, the locations with a high concentration of
sensors show have a much lower associated uncertainty. How-
ever, the variation of the Kriging mean shows counterintuit-
ively low values (comparable or lesser than the sensor uncer-
tainties) at certain unsampled locations, particularly at those
in the vicinity of RONDCOM. In contrast, the mean value
of the Kriging variance is close to the sampled points and
increases at locations far from the sensors. The combination
of the values determined using the Monte Carlo approach,
however, show a more physically consistent behavior. In other
words, the variation arising due to the inherent uncertainty of
the sensor measurements is combined with the spatial vari-
ation resulting from the Kriging interpolation to generate a
more complete measure of the propagated uncertainty for the
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Figure 9. Left: the variance of the Kriging mean determined using the Monte Carlo approach, center: the mean of the Kriging variance
determined similarly and right: the total standard deviation representing the measurement uncertainty of the interpolated values. The sizes of
the spheres denoting the sensors are inversely proportional to the individual measurement uncertainties.

Figure 10. Left: the variance of the Kriging mean determined using the Monte Carlo approach, center: the mean of the Kriging variance
determined similarly and right: the total standard deviation representing the measurement uncertainty of the interpolated values for a 1D
section of the grid. In all the plots the solid blue line corresponds to the interpolated temperature determined using Kriging, while the light
blue regions represent the corresponding standard deviations. The sensor uncertainties are represented by the yellow error-bars.

interpolated value. In figure 10, the propagated uncertainty
determined using the Monte Carlo approach is plotted along
side the mean temperature determined using Kriging for the
1D section of the room containing Sensors 09, 11, 13, 17 and
19 (see figure 1). Similar plots for the mean Kriging variance
and the total standard deviation are also provided. From the
plots it is apparent that Monte Carlo approach reproduces the
sensor uncertainties at their individual locations. However, the
uncertainties determined in this way for the interpolated points
is lower than those for the measured sensor values. Combining
the Monte Carlo uncertainties with the Kriging standard devi-
ation according to the law of total variance (cf equation (20))
results in physically consistent uncertainty values at points far
away from the sensors. In doing so, the Kriging variance rep-
resents the unexplained component of the total uncertainty,
whereas the Monte Carlo propagated uncertainty represents to
the explained component.

5. Conclusions

A method for interpolating room temperatures and comput-
ing the associated uncertainty by combining the effects of the
sensor measurement uncertainty determined from calibration
along with the estimated spatial variation arising from the
interpolationmodel has been presented. In particular, Ordinary

Kriging was used to interpolate the temperature readings from
a limited number of sensors in a measurement room hous-
ing CMMs (see figure 1). Readings from the 24 sparsely-
distributed sensors corresponding to the measurement setup
were taken over a period of four months from June to Octo-
ber 2022. As a result, periods with both relatively warmer
and colder days were part of the experiment. Moreover, a
moveable trolley with an attached heating element and two
additional sensors was placed in the room in three differ-
ent positions for three distinct periods in order to assess the
effects of localized disturbances on the measurement system.
The performance of the Kriging interpolation was assessed by
comparing the temperature measured by one of the sensors
movingwith the heating element (Sensor 26) with the interpol-
ated value at its physical location determined using the fixed
sensors (Sensors 01–24). It was found that the presence of the
heating element negatively affects the interpolation, i.e. the
average deviation of the interpolated value from the readings
of Sensor 26 increase at least by a factor of 6 when the heating
element is switched on. The measurement uncertainty propag-
ated from the sensors to a given point in the volume of the
measurement room was quantified using a combination of two
values determined using a Monte Carlo approach. The first
value corresponds to the variance of the mean interpolated
value determined using Kriging, whereas the latter denotes the
mean value of the Kriging variance across the Monte Carlo
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trials (cf section 3.3.1). The two aforementioned values were,
respectively, identified with the unexplained and explained
components of the total variance of a random variable (cf
equation (20)), such that the combination of the two can be
interpreted as the uncertainty of the interpolated value. The
interpolated temperatures and the corresponding uncertainties
depend most strongly on those of the nearest sensor such that
the propagated uncertainty is smaller in the vicinity of the
sensor with lower uncertainty. The present study dealt with
the problem of interpolation and uncertainty propagation for a
given instance of sensor readings and the influence from aniso-
tropies arising from the operation of air-conditioning units in
the measurement rooms has not been considered. In future
research, the effect of cooling as well as of adding and remov-
ing sensors to the setup will be investigated. Furthermore, the
viability utilizing the temporal correlations between sensor
values to improve and, potentially, speed-up the Monte Carlo
uncertainty propagation will be examined.
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