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Abstract 
Oscillations due to three different forces in three areas of physics: electrostat-
ic, nuclear, and mechanics, are analyzed. The electrostatic long-range Cou-
lomb force has a different character than the nucleonic short-range Yukawa 
force. Both are different from the linear Hooke’s force. The equation of mo-
tion of each case is solved applying a Computer Algebra System (CAS). It is 
shown that these oscillations have similarities and differences. Phase dia-
grams of all three cases are compared. 
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1. Introduction 

We consider three distinct areas of physics: mechanical, electrical, and nuclear. 
We search a common scenario overlapping these areas, i.e., oscillations. In the 
area of mechanics, we consider a linear retractable force, namely a spring that is 
subject to Hooke’s law [1]. The impact of this force on a massive object is linear 
oscillations. Compatible with forthcoming cases, a setup composed of a spring 
and an inclined is considered. For the electrostatic theme, we consider a force 
that is in proportion to the inverse squared distance between two point-like 
charges i.e., the Coulomb force [2]. A setup like the previous case, a paired of 
charges and an inclined are considered. This is conducive to non-linear oscilla-
tions. And for the nuclear theme, we consider a pair of interacting nucleons. The 
nucleonic interaction, the Yukawa force [3] is the strengthened version of the 
Coulomb force.  

With these envisioned common settings, a forum is set to compare the cha-
racteristics of the induced oscillations.  

This report is composed of three sections. In addition to Section 1, in Section 
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2, by applying the fundamental laws of mechanics, we craft the equations of mo-
tions for each of the three cases. Except for the first case where the equation of 
motion is a trivial analytic solvable ODE, the other two cases are nonlinear ODE. 
Applying a Computer Algebra System (CAS) specifically Mathematica [4], these 
are solved numerically. Plots of these solutions are compared characterizing the 
oscillations [5]. Additional auxiliary information is obtained by plotting their 
associated phase diagrams. Section 3 is the conclusions highlighting the lessons 
learned.  

2. Calculation  

We begin with the Coulomb force. Then we move to Yukawa force and then for 
a reference point we include the Hooke’s force.  

A) Coulomb force [2]. To weaken the gravity force we place a charged marble 
q of mass m at the top of an incline. A second identical charged marble is fas-
tened at the bottom of the ramp. By adjusting the inclination angle, we adjust the 
gravity force. The effective weight of the marble along the incline is mgsin(θ), g 
is the gravity acceleration. Figure 1 depicts the setup. The length of the incline, 
i.e., the initial distance between the masses is d.  

Equations of motion for all three cases are formed applying Newton’s law, 

net m=F a . The netF  includes two terms: 1) the above-mentioned effective weight 
and 2) one of the case-related forces. For the Coulomb interaction, this is, 
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identical charges Fc is repulsive. 
B) Yukawa force [3]. The force between two nucleons is attractive and 

short-range. It is formulated as, 
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In (2), g2 is the nucleonic coupling constant, ξ is the scale parameter that controls  

the interaction range, and ( )0
1 e xY x
x

ξξ
ξ

−= , respectively. We make two notes  

concerning FY within the content of our aimed objectives. Acknowledging that 1) 
Yukawa force, when applied to nucleons within a nucleus, is attractive. And 2) 
its effective range is being controlled by the inverse mass of the virtual pion, ξ as 
such the effective range of (2) is within femtometers. For the objective of our in-
vestigation a) by inserting a minus sign the force becomes repulsive and, b) we 
assign values to ξ such that (2) becomes a long-range compatible with our objec-
tives.  

It is insightful comparing these two forces, i.e. FC and FY vs. their effective 
range. For the sake of comparison in Figure 2 we set, kq2 = g2.  
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Figure 1. Two point-like massive, charged marbles are placed on the ramp. Their initial 
separation distance is d and their instantaneous distance is d-x. The top marble is loose 
the bottom one is fastened to the base.   

 

 
Figure 2. The vertical axis is the value of the repulsive force acting on the marbles. The horizontal axis is the instantaneous sepa-
ration distance between the marbles. The d is the initial separation distance between the marbles, d-x is their actual effective sepa-
ration distance. The impact of the scale factor ξ is displayed by the plot label.  
 

Figure 2 shows while the marbles are closing in the repulsive force between 
them is gaining strength. And that the larger the ξ the longer the effectiveness of 
the Yukawa force. As shown for a certain value of ξ, i.e., 0.6 the Coulomb and 
the Yukawa forces are closely comparable; at a certain separation distance, they 
cross over signifying the same strength. Concluding, Figure 2 suggests the re-
sulting oscillations due to various values of ξ ought to be compared. This is re-
ported in the upcoming paragraphs.  

For the Coulomb force the equation of motion for the sliding marble is,  

( )
( ) 2

1 0t c
d x t

x α+ − =
−  

                       (3) 

In (3), x  is the acceleration, 
2kq

m
α =  and ( )sinc g θ= , respectfully. For a  

set of reasonable practical values such as, { } { }, , , 2 grams,4 C,10 m,30m q d θ = µ   
these yields { } { }3 2 2, 72 m s ,5 m scα − −= ⋅ ⋅ .  

For the Yukawa force equation of motion is,  
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As previously noted for comprehensive comparison the strength of the forces, 
α, c in (3-4) are set the same.  

Applying Mathematica [4] with initial conditions:  
( ) ( ){ } ( ) ( ){ } { }0 , 0 0 , 0 0,0x x Y Y= =

  plots of the solutions of (3-4) are shown in 
Figure 3.  

The Black curve is the solution of (3). It shows the sliding marble begins from 
the far initial distance approaches the bottom marble yet doesn’t reach it, stops 
momentarily, rebounds climbing up the ramp. It repeats the process, meaning it 
oscillates. The Magenta and the Red curves have almost the same characters. 
Meaning the Yukawa force causes oscillations. Published literature hardly has 
discussed this issue. The latter two mentioned curves reveal the impact of the ξ. 
The Magenta curve with ξ = 0.4 is affiliated with the short-ranged and strong 
Yukawa force c.f. Figure 2. This value of ξ short-cuts the minimum distance of 
approach. By the same token, the red curve with ξ = 0.6 is affiliated with the 
long-ranged and weak Yukawa force. As such the minimum distance of ap-
proach is longer than the magenta curve. And at last, the green curve is indica-
tive of an oscillation, however, the ξ = 0.2 corresponding to the strongest of the 
set provides a force pushing the marble up the ramp opposing the notion of the 
minimum distance of approach. Nonetheless, it inherits the oscillations.  

Given the descriptive paragraph, we are guided to investigate the velocity cha-
racter of each case. See Figure 4. 

Phase Diagram: 
Having the position of the sliding marbles vs. time we form the needed acce-

leration. Consequently, by eliminating the time between the pairs, ( ) ( ){ },x t x t  
and ( ) ( ){ },x t x t   we display the corresponding phase diagrams. These are de-
picted in Figure 5. 

As shown irrespective of the nonlinearity of the forces all three paired phase 
diagrams are closed. As expected, the first two pairs are somewhat alike. This is 
expected because the Coulomb and Yukawa forces have much in common, c.f. 
Figure 2. In these diagrams, their adjusted force parameters are counted for the 
aspect ratio. The last pair is self-descriptive.  

 

 
Figure 3. The black curve is the profile of Coulomb oscillations. The other three are the 
profiles due to Yukawa oscillations. The vertical and the horizontal axes are the actual 
separation distances of the corresponding cases and the oscillating times, respectively.   
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Figure 4. Rows correspond to Coulomb, Yukawa, and Hooke’s forces. Left to right of each row corresponds to position, velocity, 
and acceleration vs. time. The vertical axis of the first, the second and the third column are the actual separation distances, the 
speeds, and the accelerations of the associated cases, respectively. The horizontal axis of all cases is the times. 
 

 
Figure 5. Phase diagrams of the Coulomb, Yukawa, and Hooke’s forces. Paired diagrams of each case are display of the {x, v} and 
{v, a}. Except for the familiar last pair, the other two pairs reveal the impact of the nonlinear forces.  

3. Conclusion 

We set an objective to compare the impact of the Coulomb and the Yukawa 
force for oscillations of paired massive point-like objects. The first force is 
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somewhat familiar, the interaction is in proportion to 1/dist2, yet the character of 
the second one being confined to the short-range nucleonic force is confined to 
the mass of the exchanged mesons. No interest has been shown in the literature 
concerning their potential induced oscillations. In our investigation systemati-
cally we showed the similarities and differences of the impact of these forces. We 
have not applied quantum mechanical nonrelativistic Schrodinger physics, we 
strict our analysis to classical physics. The assumption is made concerning the 
impact of the Yukawa force beyond the short range. By solving the associated 
nonlinear equation of motion, we have shown the impact of these nonlinear 
forces on the classic two-body oscillations.   
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