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Abstract 
 

This work aims at making a choice of selecting the best property of central composite design (CCD). The 

three basic properties of CCD are rotatable, orthogonal and slope-rotatable with four optimality criteria; D, E, 

A and T. A complete 2
3 
factorial experiment with increase in center points and non-replication of axial point 

was used for the entire work. The software applications used to run the analysis are Minitab and Excel. 

Minitab was used to create CCD with the respective center points and axial distances to fit the quadratic 

response polynomial. Excel was used to evaluate all the optimality criteria with respect to the properties of 

CCD and the efficiency of these criteria. Response surface graph was plotted to interpret how good the design 

is with the factors interaction. The result shows that A – optimality criterion is the best optimality criterion 

with respect to rotatable central composite design (RCCD), orthogonal central composite design (OCCD) and 

slope – rotatable central composite design (SRCCD) because of the increase in efficiency as the center point 

increases. Rotatable central composite design (RCCD) is considered in this context as the best property of 

central composite design in response surface methodology by comparing the increase in efficiency of the four 

optimality criteria as the center point increases. 
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1 Introduction  
 
Yisa Y [1] gave meaning to  response surface methodology (RSM) based on their area of interest as a statistical 

technique that is essential for the optimization of chemical reactions or in an industrial process that is use for 

experimental design. RSM can be used to examining the relationship between the observed (response) and input 

variables for the purpose of optimization of relevant processes [2]. Response surface methodology is a 

collection of statistical models to show how variables are related and how the response is influence by several 

variables [3-6]. Response surface methodology (RSM) is a support beam for design applications such as 

agricultural, engineering experiments etc. It can also be seen as a set of tools in design of experiments that 

examine the region of design variables in one or more responses. Response Surface Methodology (RSM) based 

on Central Composite Design (CCD) was used to evaluate and optimize the effect of hydrogen peroxide, ferrous 

ion concentration and initial pH as independent variables on the total organic carbon (TOC) removal as the 

response function [7]. Central composite design is an experimental design useful in response surface 

methodology, for building a second order (quadratic) model for the response variable without needing to use a 

complete three-level factorial experiment. Central Composite Design (CCD) is the default of Design of 

Experiment (DOE) type. It provides a screening set to determine the overall trends of the model to better guide 

the choice of options in Optimal Space-Filling Design (OSFD). [8] changed 2
nd

 - degree response surface 

designs to make more accurate estimates about rotatability in response surface, employing central composite 

designs (CCD). [9] showed a class of balanced, near rotatable second order designs which minimized the 

number of full factorial runs associated with CCD that is suitable for a spherical region of interest. An extensive 

study of the second-order response surface central composite designs (CCDs) and partial replication of the 

central composite designs (CCDs) and its related studies was researched by [10].   [11] develop an approach for 

better understanding of the relationship between variables and response for optimum operating settings for 

maximum yield of watermelon crop using Central Composite Design and Response Surface Methodology. [12] 

study the effect comparing prediction variances in spherical regions using central composite design.  [13] apply 

rotatable central composite design and response surface methodology  to optimized chromite concentration for 

multi-gravity separator. The Central Composite Designs have been extensively studied and there exist vast 

literature on the subject. For reference purpose, see [14,15,16] and [17].  
 

Estimating the desirable properties of a design using 2
nd

-order response surface is the problem many researchers 

usually encountered in Central Composite Design (CCD). A design may be superior by one optimality criterion 

but may perform poorly when evaluated by another optimality criterion. [18] did comparative studies of five 

properties of central composite design (CCD); rotatable central composite design (RCCD), spherical central 

composite design (SCCD), orthogonal central composite design (OCCD), face central composite design (FCCD) 

and slope – rotatable central composite design (SRCCD) in response surface methodology with D, A, G and IV 

– optimality criteria and replicating center point and axial portion. But in this study, emphasis is placed on three 

basic properties of Central Composite Design (CCD); rotatable central composite design (RCCD), orthogonal 

central composite design (OCCD) and slope – rotatable central composite design (SRCCD) with D, A, E and T -   

optimality criteria and increase  in center point and non-replication of axial point. The determination of best 

property of central composite design in Response Surface Methodology with respect to non-scaled predicted 

variance optimality criteria is the major interest advanced in this research.  
 

2 Methodology 
  
2.1 Rotatable Central Composite Design (RCCD) 
 

In RSM, rotatability is considered as one of the desired properties of the second order designs. In rotatable 

design the variance of the predicted response )(ˆ xy depends on the location of the point 

),...,,()( 21 kxxxxf  that is, it is a function only of distance from the point ),...,,()( 21 kxxxxf  to the 

center of the design. By definition, a design is rotatable if var {y(x)} is a constant at all the points that are 

equidistant from the center of the design. Setting   4
1

f makes central composite design rotatable, where 

f is the factorial point. 
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If the objective of the experimenter is to estimate a second order model, the capability of a design to minimize 

the variance of the response variable becomes very important. To compare the second-order designs based on 

their prediction quality, the scaled prediction variance,
2

)ˆ(
)(



yNVar
xVar  , can be used. If the scaled 

prediction variance is constant on spheres, the design is said to be rotatable.  

 

Rotatable guarantees that )(xVar has the same value at any location that has the same distance from the design 

center. This implies that rotatable provides equal precision of estimation in any direction from the design center. 

Thus, if a design is rotatable, )(yE can be safely used as a prediction of the future response values within the 

region of interest. Rotatable designs may not provide the stability of the distribution of the scaled prediction 

variance throughout the design region. In such cases, some center runs can be added to make the )(xVar more 

stable. A reasonably stable )(xVar provides insurance that the prediction variance of the response values is 

roughly the same throughout the region of interest. When the region of interest is spherical, rotatability concept 

plays an important role in evaluating alternative designs. However, rotatability is not an important condition to 

be satisfied when the region of interest is cuboidal. For second-order designs, exact rotatability is not an 

absolute requirement; near rotatability may suffice. When the criterion of rotatability is in conflict with some 

other important consideration, a moderate departure from exact rotatability can be acceptable. 
*Q is a criterion 

that measures the degree of rotatability of a design when it is not perfectly rotatable. 

 

2
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                                                                                               (1)

 

 

Where
2

..,.... is the matrix 
2L  norm and M is the moment matrix, )()( 44220 MVtrVMVtrVVM 

(averaging over all possible rotations in the factor space), and 
0V  is a matrix that consists of 1 position and 

zeroes elsewhere. The rotatability measure 
*Q is, essentially, an

2R  statistic for the regression of the design 

moments of the second and fourth order in M onto the ideal design moments represented by V. In order words, 

Rotatability means that the variance of predicted response )](ˆ[ xyV is the same at all point x that are the same 

distance from the design center. A design with this property will leave the predicted variance )ˆ( yV unchanged 

where the design is rotable about the center (0.0…,0), hence the name rotatable design. The study of rotatable 

designs is mainly emphasized on the estimation of difference of yields and its precision by [19]. Since we are 

dealing with the pp information matrix )(  there are several possibilities for defining rotatability, each 

corresponding to a different scalar function of the matrix. 

 

2.2 Orthogonal Central Composite Design (OCCD) 

 
The orthogonality property is easily attainable for a first-order response surface design. If all design points are at 

1   extremes and the )( XX T
 is orthogonal, the estimates contained in ̂

 
are uncorrelated and the 

corresponding variances of estimates are minimized. Note that )ˆ(Var 12 )( XX T , thus minimizing the 

i
th

 diagonal element of 
1)( XX T

is equivalent to minimizing the )( iVar  . For the second-order model, the 

moment matrix is not diagonal because the sums of products between 
2x  and 1 (an intercept) and between 

2
ix  

and 
2
jx  will not be zeros unless all sxiu '2

 are zeros. So, it is impossible to have a (completely) orthogonal 

matrix in unscaled variables. [20] discussed how to construct the second-order orthogonal designs by making 

use of an orthogonal polynomial coding.  
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A 2
k
 factorial design and the fractional factorial 2

k-1
 design in which the main effects are not aliased with other 

main effects are orthogonal designs. Consider a second order model with pure quadratic terms corrected for their 

means. 

 

  ij

k

i

k

ij

k

i

jiijiiiii

k

i

iio xxxxxy    
 



 1 1

1

1

22

1



                                           (2)

 

 

where 

2

1

2 












N

i

i
n

x
x  . Let ijiii bbbb ,,,0   denote the least square estimators of 

ijiii  ,,,0   respectively. In the CCD, all the covariance between estimated regression coefficient except

),cov( ijii bb   are zero. But if the inverse of the information matrix
1)( XX T

 
 
is a diagonal matrix, then

),cov( ijii bb   also becomes zero. This property is called orthogonality. The condition for making a CCD 

orthogonal is by Setting

2

1

2 











 


fNf
 .Where

kfnrkfN 2,)2( 0  . The orthogonal CCD 

provides ease in computations and uncorrelated estimates of the response model coefficients. The ability of a 

design in providing minimum-variance estimation of model parameters can be measured by the property of 

orthogonality. 

 

2.3 Slope Rotatable Central Composite Design (SRCCD) 

 
The experimenter is interested in estimation of the rate of change of response for a given value of independent 

variables rather than optimization of response. Effort has been made in the literature for obtaining efficient 

designs for the estimation of differences in responses, i.e, for estimating the slope of a response surface. Many 

researchers with different approaches have taken up the problem of designs for estimating the slope of a 

response surface. In this research, we have confine to only one approach, namely slope rotatable design. The 

design possessing the property that the estimate of derivative of the predicted response is equal for all points 

equidistant from the origin is known as slope rotatable design.  

 

Consider the second - order response surface equation given as; 
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The rate of change of response due to ith independent variable is given by; 

 





ij

iijiiii
i

xbxbb
dx

xyd
2

)(ˆ

                                                                                                        (4)            

                                                                  

 

The variance of this derivative is a function of the point x at which the derivative is estimated and also a 

function of the design through the relationship 

 

12 )()(  XXbVar T
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Thus variance of (2) is given by 

 

 )()(42)(2)(
)(ˆ

ijbVariibVarixiibVaribVar

ix

ixy
Var 


















                    (5) 

 

Thus in order to obtain slope rotatable design, the design must satisfy the condition below. 

 

1. )()(4 ijbVariibVar   

2. 
kiiViVV
2

)ˆ()ˆ()0
ˆ(


    
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Here, 
2
3

2
2

2
1

2 xxx  is the distance of the ith design point from the design center whose coordinate is 

(0,0,0). 

 

It is important to note here that no rotatable design can be slope rotatable. 

 

An analog of the Box-Hunter rotatability criterion, which requires that the variance of 

idx

xyd )(ˆ
 be constant on 

circles (k=2), spheres (k=3), or hyperspheres (k≥4) centered at the design origin. Estimates of the derivative 

over axial directions would then be equally reliable for all points x equidistant from the design origin. They 

referred to this property as slope rotatability, and showed that the condition for a CCD to be a slope –rotatable is 

as follows; 

 

        0))(1(2)1(88)8()4(4)(2 222468
0  fNkffkfkkNfkfnf   

The values of  for slope-rotatable central composite design are evaluated.  

  

2.4 Optimality criteria 
 

Design optimality is a variance-type criterion that involves optimizing various individual properties of the 

)( XX T
matrix. Optimal designs are experimental designs that are generated based on a particular optimality 

criterion and are generally optimal only for a specific statistical model [21-22]. Optimal design methods use a 

single criterion in order to construct designs for response surface methodology (RSM); this is especially relevant 

when fitting second order models.  

 

An optimality criterion is a criterion which summarizes how good a design is, and it is maximized or minimized 

by an optimal design. Design optimality is often called the alphabetical optimality criteria because they are 

named by some of the letters of the alphabet. 
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(a) D-optimality criterion 

 

The D-optimality focuses on the estimation of model parameters through good attributes of the moment matrix 

which is defined as; 

 

XXNM T1)(                                                                    (6) 

 

where XX T
the information matrix and N is the total number of run, X represents the model matrix associated 

with the D-optimal design and
TX   represents its transpose.  D-optimality seeks to maximize the determinant of 

the information matrix XX T
 or equivalently seeks to minimize the inverse of the information matrix. That is

XX Tmax  or 
1)(min XX T

 

The D-efficiency = 100

1

1 
pnT XXN , where pn  is the number of model parameter                                 (7) 

 

(b) A-optimality criterion 

 

This criterion seeks to minimize the trace of the inverse of the information matrix ( XX T
). This criterion 

results in minimizing the average variance of the estimates of the regression coefficients. Unlike D-optimality, it 

does not make use of covariance among coefficients. The A in the name stands for average.  

 

)]([minarg 1*   Mtrace
 ])[(minarg 1 XXtrace T   Where XXM T)(                        (8) 

The A – efficiency =  
100

)( 1


XXNtrace

n

T

p
, where pn = number of model parameter                        (9) 

 

(c) E – optimality criterion 

 This criterion minimizes the maximum eigenvalue of the dispersion matrix, 
1)( M . Symbolically, a design 

 is said to be E-optimality if it gives }1{ MaxMin  , where  is the largest eigenvalue of the information 

matrix )(M .
  
The relative efficiency of E-optimality is denoted by; 

 

  1

100



NMax

n
E

p

eff , 

   

where pn = number of model parameter                                                 (10) 

  

(d) T – optimality criterion 

 

This criterion seeks to maximize the trace of the information matrix ( XX T
). This criterion results in 

minimizing the average variance of the estimates of the regression coefficients [23]. The A in the name stands 

for average. )]([maxarg*  Mtrace )]([maxarg XXMtrace T , where XX T ,  

  
100

1
1


pn
T

eff

XXNTra

T ,  where np = number of model parameters                                                 (11) 
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2.5 Formation of design matrix 
 

Given a k  –parameter function, )(xf  on N-point design has an kN   design matrix such that each row of 

the matrix is a point in X
~

. For example, consider a n-points design matrix below; 
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The extended design matrix of i = k for 2
nd

-Order Response Surface becomes; 

 

e
j

x
i

x
k

a
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axxaxaxaxaxaaxxf 



1

,....
215

2
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2
1322110

)
2

,
1

(
      (13)

 

 

For k = 2 factors, the design matrix is given by; 
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(14) 

 

2.5.1 Determination of code value from natural data 

 

The coded value can be obtained from natural data using the formula below: 

 

trsni
s

tr
xi 


 ,0..,...,3,2,1,                                                         (15) 

 

where  r = 
ht  value of the natural data, t  = chosen value in the set of natural data s = step size of the data 

 

2.5.2 Information matrix 

The information matrix )(M  is defined to be 

















Xx

xx

XX

M
~

)(

                                  (16)

 

Normalized information matrix 
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where k

x

N

XXkN
2

2

)( 

= if the weight are uniform or uniform probability measure.

 



Xx k

wxxk x
x

~

2
 = Non uniform probability measure  

N = size of the matrix and k = number of factors 

 

2.6 Data presentation 

 
The data collection procedure in this research work is the secondary source. The design for the maize 

experiment with different organic manure such as compost manure (k1), Green manure (k2) and animal manure 

(k3) was applied for the growth and yield ( y ) of the crop. The data obtained for the experiments are shown in 

the appendix. 

 

3 Results and Discussion 

 
3.1 Optimality criteria of the three basic properties of central composite design 

 
3.1.1 Optimality with three factors and 3 center points under rotatability condition 

 

Rotatable Central Composite Design for k = 3 and ho = 3 

 

The design matrix X  is obtained base on the design model given below: 

232313131212

2

333

2

222

2

1113322110 xaxaxaxaxaxaxaxaxaay   

 

Using the formula in 2.4, we obtained the following results: 

 

D-optimality = 4.027, E-optimality = 5.6402, A-optimality = 1.0809, T-optimality = 153.9938 

 

3.1.2 Optimality with three factors and 4 center points under rotatabilitycondition  

 

Rotatable Central Composite Design for k = 3 and ho = 4 

 

The design matrix X  is obtained base on the design model given below 

232313131212

2

333

2

222

2

1113322110 xaxaxaxaxaxaxaxaxaay   

Using the formula in 2.4, we obtained the following results: 

 

D-optimality = 5.3642, E-optimality = 3.5778, A-optimality = 1.0809, T-optimality = 56.669 

 

3.1.3 Optimality with three factors and 5 center points under rotatability condition 

 

Rotatable Central Composite Design for k = 3 and ho = 5 

 

The design matrix X  is obtained base on the design model given below 
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232313131212

2

333

2

222

2

1113322110 xaxaxaxaxaxaxaxaxaay 
 

 

Using the formula in 2.4, we obtained the following results: 

 

D-optimality = 6.7013, E-optimality = 2.6042, A-optimality = 1.0138, T-optimality = 57.669 

 

3.1.4 Optimality with three factors and 3 center points under orthogonality condition  

 

Orthogonal Central Composite Design for k=3 and ho= 3 

 

The design matrix X is obtained base on the design model given below: 

 

232313131212

2

333

2

222

2

1113322110 xaxaxaxaxaxaxaxaxaay   

 

Using the formula in 2.4, we obtained the following results: 

 

D-optimality = 0.4161, E-optimality = 2.2517, A-optimality = 1.3491, T-optimality = 120.098 

 

3.1.5 Optimality with three factors and 4 center points under orthogonality condition 

 

Orthogonal Central Composite Design for k=3 and ho= 4 

 

The design matrix X is obtained base on the design model given below: 

 

232313131212

2

333

2

222

2

1113322110 xaxaxaxaxaxaxaxaxaay   

 

Using the formula in 2.4, we obtained the following results: 

 

D-optimality = 0.8135, E-optimality = 2.2447, A-optimality = 1.2224, T-optimality = 125.976 

 

3.1.6 Optimality with three factors and 5 center points under orthogonality condition 

 

Orthogonal Central Composite Design for k=3 and ho= 5 

 

The design matrix X is obtained base on the design model given below: 

 

232313131212

2

333

2

222

2

1113322110 xaxaxaxaxaxaxaxaxaay   

 

Using the formula in 2.4, we obtained the following results: 

 

D-optimality = 1.4978, E-optimality = 2.2361, A-optimality = 1.1261, T-optimality = 132.079 

 

3.1.7 Optimality with three factors and 3 center points under slope- rotatability condition 

 

Slope-Rotatable Central Composite Design for k=3 and ho= 3 

 

The design matrix X is obtained base on the design model given below: 

 

232313131212

2

333

2

222

2

1113322110 xaxaxaxaxaxaxaxaxaay 
 

 

Using the formula in 2.4, we obtained the following results: 

 

D-optimality = 266.8866, E-optimality = 13.6986, A-optimality = 0.885, T-optimality = 278.624 
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3.1.8 Optimality with three factors and 4 center points under slope- rotatability condition 

 

Slope-Rotatable Central Composite Design for k=3 and ho= 4 

 

The design matrix X is obtained base on the design model given below: 

 

232313131212

2

333

2

222

2

1113322110 xaxaxaxaxaxaxaxaxaay   

 

Using the formula in 2.4, we obtained the following results: 

 

D-optimality = 229.232, E-optimality = 8.8496, A-optimality = 0.7831, T-optimality = 263.268 

 

3.1.9 Optimality with three factors and 5 center points under slope-rotatability condition 

 

Slope-Rotatable Central Composite Design for k=3 and ho= 5 

 

The design matrix X is obtained base on the design model given below: 

 

232313131212

2

333

2

222

2

1113322110 xaxaxaxaxaxaxaxaxaay   

 

Using the formula in 2.4, we obtained the following results: 

 

D-optimality = 209.65, E-optimality = 6.1996, A-optimality = 0.8166, T-optimality = 252.86 

 

The above information is summarized in Table 1 below. 
 

Table 1. Four optimality criteria for three ccd with different center points and three factors 

 

Design 
0h  k  optD  optE   optA  optT   

RCCD 3 3 4.03 5.64 1.19 154.00 

4 3 5.36 3.58 1.08 56.67 

5 3 6.70 2.60 1.01 57.67 

OCCD 3 3 0.42 2.25 1.35 120.10 

4 3 0.81 2.24 1.22 125.98 

5 3 1.50 2.24 1.13 132.10 

SRCCD 3 3 226.89 13.70 0.89 278.62 

4 3 229.23 8.85 0.78 263.27 

5 3 209.65 6.20 0.82 252.86 

   

3.2  Efficiency analysis for optimality criteria of the three basic properties of central 

composite design 
 

(a)   Rotatable CCD at ho = 3 

 

Using  the formula in 2.4, we have the following results: 

Deff = 6.76, Aeff = 49.32,, Eeff = 10.44, Teff = 45.52 

 

(b)   Rotatable CCD at ho = 4 

 

Using  the formula in 2.4, we have the following results: 

Deff = 6.57, Aeff = 51.40,, Eeff = 15.33, Teff = 50.02 
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(c)   Rotatable CCD at ho = 5 

 

Using  the formula in 2.4, we have the following results: 

Deff = 6.37, Aeff = 51.92,, Eeff = 20.21, Teff = 49.66 

 

(d)   Orthogonal  CCD at ho = 3 

 

Using  the formula in 2.4, we have the following results: 

Deff = 5.39, Aeff = 43.60,, Eeff = 26.12, Teff = 46.67 

 

(e)   Orthogonal  CCD at ho = 4 

 

Using  the formula in 2.4, we have the following results: 

Deff = 5.44, Aeff = 45.45, Eeff = 24.75, Teff = 46.18 

 

(f)   Orthogonal  CCD at ho = 5 

 

Using  the formula in 2.4, we have the following results: 

Deff = 5.48, Aeff = 46.74, Eeff = 23.54, Teff = 45.71 

 

(g)   Slope-Rotatable  CCD at ho = 3 

 

Using  the formula in 2.4, we have the following results: 

Deff = 10.29, Aeff = 66.47, Eeff = 4.29, Teff = 42.90 

 

(h)   Slope-Rotatable  CCD at ho = 4 

 

Using  the formula in 2.4, we have the following results: 

Deff = 9.57, Aeff = 70.94, Eeff = 6.29, Teff = 42.80 

 

(i)   Slope-Rotatable  CCD at ho = 5 

 

Using  the formula in 2.4, we have the following results: 

Deff = 8.98, Aeff = 64.45, Eeff = 8.499, Teff = 42.84 

 

The  results above  is summarized in Table 2 below. 

 

Table 2. Efficiency for three ccd and four optimality criteria with different center points and a replicate 

 

Design 
0h  sr  N  

effD  effA  effE  effT  

RCCD 3 1 17 6.76 49.32 10.44 45.52 

4 1 18 6.57 51.40 15.53 50.02 

5 1 19 6.37 51.92 20.21 49.66 

OCCD 3 1 17 5.39 43.60 26.12 46.67 

4 1 18 5.44 45.45 24.75 46.18 

5 1 19 5.48 46.74 23.54 45.71 

SRCCD 3 1 17 10.29 66.47 4.29 42.90 

4 1 18 9.57 70.94 6.28 42.89 

5 1 19 8.98 64.45 8.49 42.84 

 

4 Discussion of the Results 

 
For Rotatable Central Composite Design (RCCD), it is observed that when the center point increases the D-

efficiency (Deff) decreases while (Aeff), (Eeff) and (Teff)  increases. In this context, A - optimality criterion is 

considered to be the best optimality in rotatable central composite design because of its stable increase in 
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efficiency. For Orthogonal Central Composite Design (OCCD), (Deff) and (Aeff) is increasing as the center point 

increases while (Eeff)  and (Teff) is decreasing as the center point increases. It is observed that the rate of increase 

in (Aeff) is greater than(Deff). Hence, A - optimality criterion is still the best optimality in Orthogonal central 

composite design.For Slope–Rotatable Central Composite Design (SRCCD), (Deff) and (Teff) is decreasing, (Eeff) 

is increasing and (Aeff) is fluctuating as the center point is increases. Note also that efficiency is determine by 

the average minimum variance estimates of the model. Therefore, as the center point increases, the average 

variance decreases given rise to increase in efficiency. 

 

5 Conclusion 

 
Based on the results obtained in section 3 of this research, the following conclusions were made: that A – 

optimality criterion is the best optimality criterion with respect to rotatable central composite design (RCCD), 

orthogonal central composite design (OCCD) and slope – rotatable central composite design (SRCD) because of 

the increase in efficiency as the center point increases. Rotatable central composite design (RCCD) is 

considered in this context as the best property of the three basic properties of  central composite design in 

response surface .methodology by comparing the increase in efficiency of the four optimality criteria as the 

center point increases 
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Appendix 
 

Table 3. Data for three organic manures for yield of maize production 

 

Natural variables Coded variables Response 

1  2  
3  1x  

2x  
3x  y  

95 70 83 -1 -1 -1 66 

95 70 93 -1 -1 1 70 

95 80 83 -1 1 -1 78 

95 80 93 -1 1 1 60 

105 70 83 1 -1 -1 80 

105 70 93 1 -1 1 70 

105 80 83 1 1 -1 100 

105 80 93 1 1 1 75 

91.59 75 83 -1.682 0 0 100 

108.41 75 93 1.682 0 0 80 

100 66.95 88 0 -1.682 0 68 

100 83.41 88 0 1.682 0 63 

100 75 74.95 0 0 -1.682 65 

100 75 96.41 0 0 1.682 82 

100 75 88 0 0 0 113 

100 75 88 0 0 0 100 

100 75 88 0 0 0 118 

100 75 88 0 0 0 88 

100 75 88 0 0 0 100 

100 75 88 0 0 0 85 
Source: Agriculture department, Akwa Ibom State University, Uyo 
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