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ABSTRACT 
 

Air pollution is one of the key problems in urban areas and its investigation is vital both for people's 
health and for the environment as a whole. In particular, ground ozone is a secondary air pollutant 
with concentrations dependent mainly on changes in the levels of other pollutants and 
meteorological conditions within a given region. This paper presents a statistical study based on 
multivariate analysis of hourly data on 9 air pollutants and 6 meteorological variables in the town of 
Dimitrovgrad, Bulgaria over a period of 7 years and 3 months. Yeo-Johnson power transformation 
is applied to each air pollutant variable to improve normality of the time series. The dominant 
patterns in the considered data are examined with the help of Principal Component Analysis (PCA) 
and factor analysis. Furthermore, particular focus is given for determining the concentration levels 
of ozone in relation to the other air pollutants and/or 6 meteorological time series using principal 
component regression (PCR). The good fitting of the obtained models with coefficients of 
determination R2 over 78% is obtained. An example of using the model to forecast the 
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concentrations of ozone for 24 hours ahead is given. The obtained results could be used as an 
assessment in all analyses of the air quality of the town Dimitrovgrad, including the official reports 
of the Environmental Agency and also as an independent alternative to the official alerting systems.  
 

 
Keywords: Air pollution modeling; ozone concentration; principal component analysis; principal 

component regression; Yeo-Johnson power transformation. 
 
1. INTRODUCTION  
 
The monitoring, investigation and control of 
ambient air quality is a topical issue, very 
important for preserving the human health and 
the environment. Directives and regulatory 
restrictions are established in all European 
countries and worldwide for permissible 
concentrations of air pollutants [1-3]. In Bulgaria, 
12 types of pollutants are systematically 
monitored by more than 36 automated stations 
run by the Executive Environment Agency which 
manages and coordinates activities related to the 
control and environmental protection of the 
country. The availability of a huge amount of 
collected data allows their statistical examination 
and makes it possible to find significant patterns, 
as well as dependencies within the data enabling 
the prediction of future states.  
 
In literature, numerous similar investigations 
have been carried out in recent years, applying 
various mathematical methods supported by 
different statistical software. Multivariate 
statistical analysis is a well-established approach 
in this field. Recent studies where Principal 
Component Analysis (PCA), factor analysis, 
regression analysis and other methods were 
applied include for example [4-8]. Other popular 
techniques are the stochastic Box-Jenkins 
ARIMA methods [9], neural networks [10], etc. 
 
The objective of this paper is to investigate the 
relationships between а large number of air 
pollutants in Dimitrovgrad, a town in Bulgaria, 
over an extended period of 7 years and 3 
months. The specific goals of the study are: (i) 
Establishing the existence and determining the 
type of correlations between the investigated air 
pollutants; (ii) Defining patterns and possible 
groups of pollutants which are closely related, 
and classifying the pollutants; (iii) Obtaining 
multivariate regression models which describe 
the changes in ozone pollution levels in relation 
to the other pollutants and/or meteorological 
data; (iv) Applying the model for a short-time 
forecast.  

2. MATERIALS AND METHODS  
 
2.1 Study Area and Data Description  
 
We examine air quality in the town of 
Dimitrovgrad, a typical urban region in South-
central Bulgaria, 220 km away from the capital 
city of Sofia. The town is located in the Thracian 
valley on the banks of the river Maritza at an 
altitude of 125 m above sea level. It has about 40 
000 inhabitants.  
 
The study was carried out based on hourly data 
about the concentration of air pollutants between 
1st January 2007 and 7 March 2014. 
Measurements were taken by an automated 
monitoring station in the town run by the official 
Executive Environment Agency. 
 
The following 9 air pollutants are considered: 
nitrogen oxides (NOx, ppb); nitrogen dioxide 
(NO2, µg/m3), nitrogen oxide (NO, µg/m3), ozone 
(O3, µg/m3), carbon monoxide (CO, µg/m3), 
sulphur dioxide (SO2, µg/m3), hydrogen sulfide 
(H2S, µg/m3), ammonia, or azane, a compound 
of nitrogen and hydrogen (NH3, µg/m3), 
particulate matter with diameter of 10 
micrometres or less (PM10, µg/m3).  
 
Basic descriptive statistics of the data are given 
in Table 1, where n means the initial number of 
observations (number of hours). From Table 1, 
we have to note that although the mean value of 
ozone is not very high, the examined data 
indicate some values exceeding systematically 
the permissible limits established by the health 
regulations as set out in [1-3]. This is the reason 
to model additionally this particular secondary air 
pollutant. 
 
The following 6 meteorological variables are also 
used: wind speed (WS, m/s), wind direction 
(SIGMA, degree), air humidity (HUMIDITY, %), 
air temperature (TEMP, °C), sun radiation (GSR, 
W/m2) and atmospheric pressure (PRESSURE, 
mbar). To note, that in our data SIGMA is not a 
circular variable and was preliminary transformed 
to non-circular one. 
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Table 1. Descriptive statistics of the observed air pollutants* 

 
Variable n Minimum Maximum Mean Std. deviation Skewness Kurtosis 
O3 60236 0.00 1094 49.75 35.353 3.674 77.472 
NOx 61612 0.00 468 14.63 23.318 5.676 48.422 
NO 60621 0.00 451 6.47 21.323 7.541 77.478 
NO2 61013 0.00 212 18.42 16.739 2.248 7.635 
CO 58110 0.00 10 0.53 0.719 3.665 20.947 
SO2 61641 0.00 1662 31.40 60.123 6.388 73.867 
H2S 60570 0.00 0.06 0.003 0.003 5.141 54.114 
NH3 60570 0.00 0.16 0.003 0.004 6.724 144.895 
PM10 61261 0.03 896 57.08 57.165 3.738 22.080 

*Std. error of Skewness for all variables is 0.010; Std. error of Kurtosis for all variables is 0.020 
 
2.2 Data Transformation  
 
In principle, applying multivariate analysis 
requires an assumption for normal or close to 
normal distribution of participating variables, as 
well as other assumptions [11,12]. As shown in 
Table 1, the Skewness and the Kurtosis of the 
considered data are significantly different from 
zero, therefore, the normality condition is strongly 
violated. In such cases, it is advisable to improve 
the distribution by a suitable preliminary data 
transformation [9,12,13]. Firstly, the variables of 
all air pollutants were standardized with zero 
mean and standard deviation 1, using the 
formula 
 

, 1, 2,...,i
i

x x
z i n

s

−
= = . 

 
Then, the power transformation of Yeo-Johnson 
[14] was applied by the formula: 
 

                                

(1) 
 
where [ 2,2]λ ∈ −  is a parameter. The optimal 

values of λ  were chosen to give the smallest 
possible value of the Jarque-Bera test of 
normality [15], defined as 
 

2 2

6 24

Sk Ku
JB n

 
= + 

  
,                                    (2) 

 
where n is the number of cases, Sk and Ku are 
the Skewness and the excess Kurtosis of the 
transformed sample. The obtained transformed 
variables are denoted in square brackets. 

Table 2 shows the obtained optimal values for λ  
and Skewness and Kurtosis of the transformed 
variables. With the small coefficients of 
skewness and kurtosis it could be concluded that 
the distributions of transformed variables are 
closed to the normal distribution. 
 

2.3 Multivariate Statistical Methods Used 
in the Modeling Procedure 

 
The examination of the correlation matrices for 
the initial and the transformed data of the 9 
pollutants indicates the presence of high 
multicollinearities. To resolve this problem and to 
classify the data, we use the well-known PCA 
method [16,11]. PCA allows the extraction of 
linearly independent principal components (PCs), 
equal in number to the number of output 
variables. Factor analysis is also used to identify 
patterns in data using the main extracted PCs, 
which group together the variables and account 
for the greater part of the total sample variance. 
Missing values are treated listwise. 
 
In order to model ozone concentrations, the 
Principal Component Regression (PCR) [11] is 
applied resulting in an explicit dependence of the 
type: 
 

0 1 1[ 3] ... m mO b b X b X= + + + .                          (3) 
 
where [ 3]O  is the transformed ozone variable, 

0 1, ,..., mb b b  are regression coefficients and 

1 2, ,.., mX X X  are the predictors (independent 
variables, in our case – the PCs) in the model. In 
(3) the PCs obtained from the transformed 
variables for air pollutants and/or meteorological 
variables will be used as predictors. This type of 
dependence corresponds to the chemical 
processes which lead to ozone formation in 
urban areas, taking into account the influence of 
ozone precursors and meteorological conditions 
[1].  
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Table 2. Descriptive statistics of the transformed air pollutants* 

 
Transformed variable  Skewness Kurtosis JB test 

[O3] 0.44 -0.011 0.049 8 
[NOx] -1.5 0.187 -0.963 2801 
[NO] -2 1.400 0.913 22743 
[NO2] -0.15 0.167 -0.710 1614 
[CO] -0.65 0.245 -0.828 2432 
[SO2] -2 0.374 -1.092 4597 
[H2S] -0.15 0.021 0.025 6 
[NH3] -0.4 0.391 -0.670 2781 
[PM10] -0.6 0.057 -0.514 726 

*Std. error of Skewness for all variables is 0.010; Std. error of Kurtosis for all variables is 0.020 
 
Calculations are performed using the IBM SPSS 
22 statistical software. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Results from Principal Component 

Analysis for Air Pollutant Variables 
 
Further, we will work with both initial and 
transformed variables to compare results. Within 
the first step of PCA the correlation matrices 
were calculated as presented in Table 3 and 
Table 4. All columns contain coefficients over 
0.3, with the largest correlation coefficient being 
that between [NOx] and [NO2], equal to 0.957. 
All correlation coefficients of [O3] (ozone) with 
other variables are negative, which corresponds 
to the nature of chemical reactions since ozone 
is formed from other pollutants, i.e. its 
concentration is inversely proportional to their 
own. As expected, the highest negative 
correlations are those with nitrogen oxides, 
nitrogen dioxide and nitrogen oxide.  
 
The relatively high absolute values of correlation 
coefficients in Tables 3 and 4, and the small 
values of the determinants indicate the presence 
of high multicollinearity. This result is weaker in 
the second case. 
 

An adequacy test was also performed for PCA 
and factor analysis, with the KMO test yielding a 
value of KMO=0.815 > 0.5 and Bartlett’s test 
significance, equal to .000 [11]. This shows that 
the these analyses are adequate.  
 
The next step of the PCA method is to generate 
PCs resulting from the 9 transformed variables. 
Table 5 shows the calculated eigenvalues and 
the distribution of total variance. From Table 5 it 
can be observed that the last eigenvalue is very 
small and could be ignored [11,16]. With the 
presence of multicollinearity the number of PCs 
is less than 8. 
 
To classify the air pollutants and discover the 
dominant patterns in the dataset we perform 
factor analysis. Varimax rotation did not yield well 
differentiated components. For this reason we 
applied Promax rotation. The optimal factor 
solution with all 9 pollutants contains 7 factors, 
which account for 96.024% of total variance. The 
resulting rotated solution with 7 factors is given in 
Table 6. We have to add, that all the variance 
inflation factors (VIF) of the PCs are less than 
2.85, which indicate that the obtained PCs do not 
correlate one with another. Table 6 clearly shows 
that all PCs are well differentiated. PC1 groups 
together [NO2], [Nox], and [O3]. All other 
variables are individual factors. 
 

Table 3. Pearson correlation table of the initial variables of air pollutants* 

 

Variable O3 NOx NO NO2 CO SO2 H2S NH3 PM10 
O3 1 -0.418 -0.317 -0.508 -0.348 0.011 -0.267 -0.163 -0.326 
NOx  1 0.957 0.813 0.755 0.260 0.572 0.437 0.656 
NO   1 0.611 0.731 0.208 0.553 0.374 0.586 
NO2    1 0.600 0.293 0.454 0.447 0.620 
CO     1 0.304 0.587 0.323 0.672 
SO2      1 0.329 0.098 0.336 
H2S       1 0.255 0.545 
NH3        1 0.373 
PM10         1 

*Significance (1-tailed) for all correlation coefficients is P=.001 in exception of (SO2, O3), which is P=.007.                      
Determinant = 5.56E-06 
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Analogically to the previous analysis, after 
excluding ozone, we apply PCA and get 7 
uncorrelated PCs, which are used in the 
subsequent analyses. These PCs account for 
99.548% of the total variance. The loadings of 
the rotated matrix are shown in Table 7. 

 
3.2 Results from Principal Component 

Regression 
 
The next goal is to establish the explicit 
dependence between ozone and the other 
pollutants, with and without the meteorological 
data. 
 
Due to the multicollinearity of the variables, the 
direct application of multiple linear regression to 
non-transformed or transformed variables is not 
recommended and give unsatisfactory results 
[11,12]. This can be overcome using a well-
known technique, namely the extraction of 
principal components which are not mutually 
correlated. The obtained new variables can be 
used to find regression models. This mixed 
regression approach is known as Principal 
Component Regression (PCR) [11].  
 
In previous subsection 3.1, after excluding 
ozone, we obtained 7 uncorrelated PCs, which 
are used in subsequent regression analyses. In 
addition to these variables the six meteorological 
variables are also included as predictors to 
obtain regression equations. PCR is performed 
using the Stepwise method in SPSS. The 
statistical significance is established at level   
α = 0.05. 
 
The obtained standardized regression equation 
using the 7 extracted PCs, according the PCA 
(see Table 7) has the form 
 

[ 3] 0.502 1 0.092 2

0.054 3 0.202 4

0.077 5 0.008 6

0.288 7

O PC PC

PC PC

PC PC

PC

= − −
+ +
− −
−

                        (4) 

 
The coefficient of determination of (4) is 
R2=0.551. All coefficients, as well as the ANOVA 
of the model are statistically significant. The 
relative influence of ozone precursors on the 
examined data is defined. The results show the 
strongest influence is that of 1 { 2, }PC NO NOx= , 

7 { }PC NO= , followed by 4 { 2}PC SO= . The 

remaining pollutants have weaker influence.  

As was mentioned above, it is well-known that 
ozone concentration is strongly dependent on 
meteorological conditions which influences 
chemical reactions leading to its formation [1]. 
The next model is derived using the six 
meteorological variables. The resulting 
standardized equation has the following form:   
 

[ 3] 0.410

0.295 0.260

0.115

0.098

0.068

O HUMIDITY

TEMP WS

SIGMA

PRESSURE

GSR

= −
+ +
−
+
+

                   (5) 

 
The corresponding coefficient of determination is 
R2=0.635. It becomes clear from (5) that as a 
whole the main contribution in the examined 
interaction is that of low air humidity, air 
temperature and wind speed.     
 
Finally, all 7 PCs from Table 7 and also 6 
meteorological predictors are used to 
simultaneously take into account the precursors 
and the meteorological data. The resulting 
standardized regression equation is 
 

                 

(6) 
 

The coefficient of determination of model (6) is 
R2=0.783. The dominant part of the equation is 
due to the 1 { 2, }PC NO NOx= , 7 { }PC NO= , 

HUMIDITY , TEMP , and 4 { 2}PC SO= . 

 
3.3 Using the Model for a Short-time 

Forecasting 
 
To demonstrate the predictive ability of the model 
for the case of mixed model (6) we removed the 
last 24 observations (24 hours measurements) 
from the transformed ozone series [O3]. The 
repeated procedure gives the same model (6), 
with only the coefficient of 4PC  equal to 0.158 
instead of 0.159. The forecast for the ozone after 
retransformation and re-standardization is 
compared with the measured values in Fig. 1 for 
24 hours ahead. It is observed a good 
correspondence between the two series with 
R2=0.82.  
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Table 4. Pearson correlation table of the transformed variables of air pollutants* 

 
Transformed 
variable 

[O3] [NOx] [NO] [NO2] [CO] [SO2} [H2S] [NH3] [PM10] 

[O3] 1 -0.700 -0.644 -0.635 -0.399 -0.096 -0.308 -0.247 -0.411 
[NOx]  1 0.756 0.949 0.450 0.348 0.336 0.367 0.595 
[NO]   1 0.640 0.502 0.246 0.357 0.340 0.522 
[NO2]    1 0.413 0.370 0.309 0.344 0.573 
[CO]     1 0.332 0.297 0.215 0.424 
[SO2]      1 0.242 0.086 0.420 
[H2S]       1 0.258 0.337 
[NH3]        1 0.337 
[PM10]         1 

*Significance (1-tailed) for all correlation coefficients is P=.001. Determinant = 0.004 
 

Table 5. Total variance explained* 

 
Component Initial eigenvalues 

Total % of variance Cumulative % 
PC1 4.492 49.907 49.907 
PC2 1.043 11.586 61.493 
PC3 0.891 9.897 71.390 
PC4 0.760 8.442 79.832 
PC5 0.655 7.282 87.114 
PC6 0.462 5.136 92.250 
PC7 0.340 3.774 96.024 
PC8 0.322 3.581 99.605 
PC9 0.036 0.395 100.000 

*Extraction Method: Principal Component Analysis 
 

Table 6. Principal component pattern matrix for 9 air pollutants* 
 

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 
[NO2] 1.052 0.083 0.035 -0.009 -0.020 0.020 -0.175 
[NOx] 0.897 0.072 0.039 -0.023 -0025 0.023 0.078 
[O3] -0.636 0.239 0.112 -0.053 -0.072 0.057 -0.358 
[SO2]  0.020 0.974 -0.041 0.018 0.026 -0.020 0.077 
[NH3] 0.011 -0.043 0.985 0.009 0.013 -0.010 0.037 
[CO] -0.001 0.020 0.009 0.998 -0.006 0.005 -0.013 
[H2S] -0.005 0.027 0.013 -0.005 1.000 0.007 -0.023 
[PM10] 0.021 -0.021 -0.010 0.006 0.007 0.985 0.021 
[NO] 0.053 0.113 0.053 -0.018 -0.032 0.029 0.916 

*Extraction Method: Principal Component Analysis. Rotation Method:  Promax with Kaiser Normalization. Rotation converged in 
7 iterations 

 
Table 7. Factor analysis pattern matrix with 7 factors for 8 air pollutants* 

 
Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 
[NO2] 1.052 0.005 0.000 0.009 0.001 0.001 -0.102 
[NOx] 0.890 -0.005 0.001 -0.010 0.000 0.005 0.145 
[CO] 0.003 0.997 0.000 0.000 0.000 0.001 0.003 
[NH3]  0.001 0.000 0.999 0.000 0.000 0.000 0.000 
[SO2] 0.002 0.000 0.000 0.998 0.000 0.001 0.002 
[H2S] 0.001 0.000 0.000 0.000 1.000 0.000 0.000 
[PM10] 0.014 0.001 0.001 0.002 0.000 0.990 0.001 
[NO] 0.048 0.005 0.000 0.002 0.001 0.001 0.963 

*Extraction Method: Principal Component Analysis. Rotation Method: Promax with Kaiser Normalization. Rotation converged in 
6 iterations 
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Fig. 1. Comparison between the measured and forecasted values of ozone (O3) 
 
4. CONCLUSION 
 
With the help of PCA and the correlation matrix, 
8 PCs were derived and classified according to 
their relative contribution to the total level of air 
pollution. Nitrogen oxides (NOx, NO2, NO) play a 
dominant part. This result is explained by the 
presence of a large nitrogen fertilizer production 
plant in the town of Dimitrovgrad, which is the 
main source of industrial air pollution in the city, 
along with road traffic. 
   
The obtained regression equation (6) shows that 
the combined contribution of ozone precursors 
and meteorological data account for up to 78% of 
the concentration of this pollutant. The other two 
equations (4) and (5) show lower values, but 
these are significant for the clear differentiation of 
the relative participation of each pollutant and 
each meteorological factor in overall ozone 
concentration. Example of using the mixed model 
(6) forecasting 24 hours ahead ozone 
concentrations shows good agreement with 
measured values. 
 
The obtained results could be used as an 
assessment in all analyses of the air quality of 
the town Dimitrovgrad, due to the long period of 
investigation of over 7 years, including the official 
reports of the Environmental Agency. The results 
could be also used as an alternative to the official 
alerting, controlling and monitoring systems, by 
analyzing the detailed influence of the 9 primary 
pollutants and 6 meteorological variables in the 

overall air pollution and the evaluation of ozone 
concentration.  
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