British Journal of Mathematics & Computer Science 13(4): 1-15, 2016, Article no.BJMCS.22004 ISSN: 2231-0851 ## SCIENCEDOMAIN international www.sciencedomain.org ## On V_4 -cordial Labeling of Graphs N. B. Rathod^{1*} and K. K. Kanani² ¹Research Scholar, School of Science, RK University, Rajkot, Gujarat, India, Government Engineering College, Bhavnagar, Gujarat, India. ²Government Engineering College, Rajkot, Gujarat, India. ### Article Information DOI: 10.9734/BJMCS/2016/22004 (1) Sun-Yuan Hsieh, Department of Computer Science and Information Engineering, National Cheng Kung University, Taiwan. (1) Germina K. Augusthy, University of Botswana, Gaborone, Botswana. (2) Sweta Srivastav, Sharda University, India. (3) Anonymous, Neijiang Normal University, Neijiang, China. (4) Sudev Naduvath, Vidya Academy of Science Technology, Thrissur, India. Complete Peer review History: http://sciencedomain.org/review-history/12718 ## Original Research Article Received: 14 September 2015 Accepted: 30 November 2015 Published: 17 December 2015 ## Abstract In this Research article we prove the following results: - 1. The crown graph $C_n \odot K_1$ is V_4 -cordial for all n. - 2. The armed crown AC_n is V_4 -cordial for all n. - 3. The pan graph C_n^{+1} is V_4 -cordial for all n. - 4. The corona graph $C_n \odot mK_1$ is V_4 -cordial for all n and m. Keywords: Klein-four group; V₄-cordial labeling; crown; armed crown; pan graph. 2010 Mathematics Subject Classification: 05C78. #### Introduction 1 In this research article, by a graph we mean finite, connected, undirected and simple graph G =(V(G), E(G)) of order |V(G)| and size |E(G)|. Here we discuss V_4 -cordial labeling of standard graphs which are obtained by using some graph operations. ^{*}Corresponding author: rathodneha005@qmail.com In this paper we consider the following definitions. **Definition 1.1.** The Corona $G_1 \odot G_2$ of two graphs G_1 and G_2 is defined as a graph obtained by taking one copy of G_1 (which has p_1 vertices) and p_1 copies of G_2 and joining the i^{th} vertex of G_1 with an edge to every vertex in the i^{th} copy of G_2 . **Definition 1.2.** The Crown $C_n \odot K_1$ is obtained by joining a pendant edge to each vertex of cycle C_n . **Definition 1.3.** An Armed Crown is a graph in which path P_2 is attached at each vertex of cycle C_n by an edge. It is denoted by AC_n where n is the number of vertices in cycle C_n . **Definition 1.4.** The *n*-pan graph C_n^{+1} is the graph obtained by joining a cycle graph C_n to a complete graph K_1 with a bridge. In other words the pan graph is obtained by adding a pendant edge to any vertex of cycle C_n . **Definition 1.5.** A graph labeling is an assignment of integers to the vertices or edges or both subject to certain condition(s). The latest updates of various graph labeling techniques can be found in Gallian [1]. **Definition 1.6.** Let $\langle A, * \rangle$ be any Abelian group. A graph G = (V(G), E(G)) is said to be A-cordial if there is a mapping $f: V(G) \to A$ which satisfies the following two conditions when the edge e = uv is labeled as f(u) * f(v) - (i) $|v_f(a) v_f(b)| \le 1$; for all $a, b \in A$, - (ii) $|e_f(a) e_f(b)| \le 1$; for all $a, b \in A$. ### Where - $v_f(a)$ =the number of vertices with label a; - $v_f(b)$ =the number of vertices with label b; - $e_f(a)$ =the number of edges with label a; - $e_f(b)$ =the number of edges with label b. We note that if $A = \langle Z_k, +_k \rangle$, that is additive group of modulo k then the labeling is known as k-cordial labeling. **Definition 1.7.** Let $V_4 = Z_2 \times Z_2 = \{0 = <0, 0>, a = <1, 0>, b = <0, 1>, c = <1, 1>\}$ be the Klein-four group in which the operation * is defined as follows: | * | 0 | a | b | c | |---|---|---|---|---| | 0 | 0 | a | b | c | | a | a | 0 | c | b | | b | b | c | 0 | a | | c | c | b | a | 0 | The graph G = (V(G), E(G)), with vertex set V(G) and edge set E(G), is said to be V_4 -cordial if there exist a mapping $f : V(G) \to V_4$ which satisfies the following two conditions when the edge e = uv is labeled as f(u) * f(v) - (i) $|v_f(p) v_f(q)| \le 1$; for all $p, q \in V_4$, - (ii) $|e_f(p) e_f(q)| \le 1$; for all $p, q \in V_4$. #### Where - $v_f(p)$ =the number of vertices with label p; - $v_f(q)$ =the number of vertices with label q; - $e_f(p)$ =the number of edges with label p; - $e_f(q)$ =the number of edges with label q. For any undefined term in graph theory we rely upon Gross and Yellen [2]. The concept of V_4 -coordiality was introduced by A. Riskin [3] and proved the following result. - 1. Complete graph K_n is V_4 -cordial if and only if n < 4. - 2. The Star graph $K_{1,n}$ is V_4 -cordial. - M. Seenivasan and A. Lourdusamy [4] proved the following results. - 1. If G is an Eulerian graph with q edges, where $q \equiv 2 \pmod{4}$, then G has no V_4 -cordial labeling. - 2. If f be a V_4 -coordial labeling of a graph G with $p \geq 4$ and uv be an edge of G such that f(u) = 0 and $f(u) \neq f(v)$. Then the graph G' obtained from G by replacing the edge uv by a path of length five is V_4 -coordial. - 3. The Path P_4 and P_5 are not V_4 -cordial. - 4. All Trees except P_4 and P_5 are V_4 -cordial. - 5. The Cycle C_n is V_4 -cordial if and only if $n \neq 4$ or 5 or $n \not\equiv 2 \pmod{4}$. - O. Pechenik and J. Wise [5] proved the following results. - 1. The Complete Bipartite graph $K_{m,n}$ is V_4 -cordial if and only if m and n are not both congruent to 2(mod4). - 2. The Path P_n is V_4 -coordial unless $n \in \{4, 5\}$. - 3. The Cycle C_n is V_4 -cordial if and only if $n \notin \{4,5\}$ and $n \not\equiv 2 \pmod{4}$. - 4. All Ladders $P_2 \times P_k$ are V_4 -cordial, except $P_2 \times P_2$. - 5. The Prism $P_2 \times C_k$ is V_4 -coordial if and only if $k \not\equiv 2 \pmod{4}$. - 6. The d-dimensional hypercube Q_d is V_4 -cordial, unless d=2. In the present work there are new results corresponding to V_4 -cordial labeling of graphs are investigated. ## 2 Main Results **Theorem 2.1.** The Crown $C_n \odot K_1$ is V_4 -cordial for all n. **Proof.** Let $G = C_n \odot K_1$ be the crown graph. Let $v_1, v_2, ..., v_n$ be the vertices of cycle C_n and $v_1', v_2', ..., v_n'$ are the pendant vertices of crown $C_n \odot K_1$. We note that |V(G)| = 2n and |E(G)| = 2n. To define V_4 -cordial labeling $f:V(G)\to V_4$ we consider the following cases. ``` Case 1: n \equiv 0, 3 \pmod{4} f(v_i) = 0; i \equiv 0 \pmod{4}; f(v_i) = a; i \equiv 1 \pmod{4}; f(v_i) = b; i \equiv 2(mod4); f(v_i) = c; i \equiv 3 \pmod{4}; 1 \le i \le n, f(v_i') = 0; i \equiv 2 \pmod{4}; f(v'_i) = a; f(v'_i) = b; i \equiv 1 (mod 4); i \equiv 0 \pmod{4}; f(v_i') = c; i \equiv 3 \pmod{4}; 1 \le i \le n. Case 2: n \equiv 1 \pmod{4} f(v_i) = 0; i \equiv 0 \pmod{4}; i \equiv 1 (mod 4); f(v_i) = a; f(v_i) = b; i \equiv 2 (mod 4); f(v_i) = c; i \equiv 3 (mod 4); 1 \le i \le n - 1, f(v_n) = 0; f(v_i') = 0; i \equiv 2 \pmod{4}; f(v_i') = a; i \equiv 1 \pmod{4}; f(v_i') = b; i \equiv 0 (mod 4); f(v_i') = c; i \equiv 3 \pmod{4}; 1 \le i \le n - 1, f(v_n') = b. Case 3: n \equiv 2 \pmod{4} f(v_i) = 0; i \equiv 0 \pmod{4}; f(v_i) = a; i \equiv 1 \pmod{4}; f(v_i) = b; i \equiv 2(mod4); f(v_i) = c; 1 \le i \le n - 2, i \equiv 3 \pmod{4}; f(v_{n-1}) = 0; f(v_n) = b; f(v_i') = 0; i \equiv 2(mod4); f(v_i') = a; i \equiv 1 (mod 4); f(v_i') = b; i \equiv 0 \pmod{4}; f(v_i') = c; i \equiv 3 \pmod{4}; 1 \le i \le n-1, f(v_n') = c. ``` The Table 1 shows that the labeling pattern defined above covers all possible arrangement of vertices. In each possibility the graph under consideration satisfies the vertex conditions and edge conditions for V_4 -cordial labeling. Hence, the Crown $C_n \odot K_1$ is V_4 -cordial for all n. Let n = 4p + q, where $p, q \in N \cup \{0\}$. Table 1 | \mathbf{q} | Vertex conditions | Edge conditions | |--------------|---------------------------------------------|---------------------------------------------| | 0,2 | $v_f(0) = v_f(a) = v_f(b) = v_f(c)$ | $e_f(0) = e_f(a) = e_f(b) = e_f(c)$ | | 1 | $v_f(0) = v_f(a) + 1 = v_f(b) = v_f(c) + 1$ | $e_f(0) = e_f(a) + 1 = e_f(b) = e_f(c) + 1$ | | 3 | $v_f(0) + 1 = v_f(a) = v_f(b) + 1 = v_f(c)$ | $e_f(0) = e_f(a) + 1 = e_f(b) = e_f(c) + 1$ | **Illustration 2.2.** The crown $C_5 \bigcirc K_1$ and its V_4 -coordial labeling is shown in Fig. 1. Fig. 1 V_4 -cordial labeling of crown $C_5 \bigodot K_1$ **Theorem 2.3.** The Armed Crown AC_n is V_4 -cordial for all n. **Proof.** Let $G = AC_n$ be the armed crown. Let $v_1, v_2, ..., v_n$ be the vertices of cycle C_n . Let v_i, v_i' and v_i'' be the vertices of path where $1 \le i \le n$. Here, each v_i' is adjacent to both v_i and v_i'' for all i. We note that |V(G)| = 3n and |E(G)| = 3n. To define V_4 -cordial labeling $f:V(G)\to V_4$ we consider the following cases. ``` Case 1: n \equiv 0 \pmod{4} f(v_i) = 0; i \equiv 0 (mod 4); f(v_i) = a; i \equiv 1 \pmod{4}; f(v_i) = b; i \equiv 2 (mod 4); f(v_i) = c; i \equiv 3 (mod 4); 1 \le i \le n, f(v_i') = 0; i \equiv 2 \pmod{4}; f(v_i') = a; i \equiv 1 (mod 4); f(v_i') = b; i \equiv 0 \pmod{4}; f(v'_i) = c; f(v'_i) = c; f(v''_i) = 0; f(v''_i) = a; f(v''_i) = b; f(v''_i) = c; i \equiv 3 \pmod{4}; 1 \le i \le n, i \equiv 3 \pmod{4}; i \equiv 1 \pmod{4}; i \equiv 2(mod4); i \equiv 0 \pmod{4}; 1 \le i \le n. Case 2: n \equiv 1 \pmod{4} f(v_i) = 0; i \equiv 0 \pmod{4}; f(v_i) = a; i \equiv 1 (mod 4); f(v_i) = b; i \equiv 2 \pmod{4}; f(v_i) = c; i \equiv 3 \pmod{4}; 1 \le i \le n, f(v_i) = c; f(v'_i) = 0; f(v'_i) = a; f(v'_i) = b; f(v'_i) = b; f(v''_i) = 0; f(v''_i) = a; f(v''_i) = b; f(v''_i) = c; f(v''_i) = c; i \equiv 2 \pmod{4}; i \equiv 1 \pmod{4}; i \equiv 0 \pmod{4}; 1 \le i \le n - 1, i \equiv 3 \pmod{4}; i \equiv 3(mod4); i \equiv 1 \pmod{4}; i \equiv 2(mod4); i \equiv 0 (mod 4); 1 \le i \le n - 1, f(v_n'') = c. Case 3: n \equiv 2 \pmod{4} f(v_i) = 0; i \equiv 0 \pmod{4}; ``` ``` i \equiv 1 \pmod{4}; f(v_i) = a; f(v_i) = b; i \equiv 2(mod4); f(v_i) = c; i \equiv 3 \pmod{4}; 1 \le i \le n, f(v_i') = 0; i \equiv 2 (mod 4); f(v_i') = a; i \equiv 1 \pmod{4}; f(v_i') = b; i \equiv 0 \pmod{4}; f(v_i') = c; i \equiv 3 (mod 4); 1 \le i \le n-2, f(v_{n-1}') = 0; f(v'_n) = c; f(v''_i) = 0; f(v''_i) = a; i \equiv 3(mod4); i \equiv 1 \pmod{4}; f(v_i^{\prime\prime}) = b; i \equiv 2(mod4); f(v_i'') = c; 1 \le i \le n-2, i \equiv 0 (mod 4); f(v''_{n-1}) = b; f(v''_n) = c. Case 4: n \equiv 3 \pmod{4} f(v_i) = 0; i \equiv 0 \pmod{4}; f(v_i) = a; i \equiv 1 \pmod{4}; f(v_i) = b; i \equiv 2 \pmod{4}; f(v_i) = c; i \equiv 3 \pmod{4}; 1 \le i \le n, f(v_i') = 0; i \equiv 2 \pmod{4}; f(v_i') = a; i \equiv 1 \pmod{4}; f(v_i') = b; i \equiv 0 \pmod{4}; f(v_i') = c; i \equiv 3 \pmod{4}; 1 \le i \le n, f(v_i^{\prime\prime}) = 0; i \equiv 3(mod4); f(v_i^{\prime\prime}) = a; i \equiv 1 \pmod{4}; f(v'_i) = a, t \equiv 1 \pmod{4}, f(v''_i) = b; i \equiv 2 \pmod{4}; f(v''_i) = c; i \equiv 0 \pmod{4}; f(v''_{n-2}) = 0; f(v''_{n-1}) = c; f(v''_n) = b. 1 \le i \le n - 3, ``` The Table 2 shows that the labeling pattern defined above covers all possible arrangement of vertices. In each possibility the graph under consideration satisfies the vertex conditions and edge conditions for V_4 -cordial labeling. Hence, the Armed Crown $C_n \odot K_1$ is V_4 -cordial for all n. Let n = 4p + q, where $p, q \in N \cup \{0\}$. Table 2 | \mathbf{q} | Vertex conditions | Edge conditions | |--------------|-------------------------------------------------|-------------------------------------------------| | 0 | $v_f(0) = v_f(a) = v_f(b) = v_f(c)$ | $e_f(0) = e_f(a) = e_f(b) = e_f(c)$ | | 1 | $v_f(0) + 1 = v_f(a) = v_f(b) = v_f(c)$ | $e_f(0) = e_f(a) = e_f(b) + 1 = e_f(c)$ | | 2 | $v_f(0) + 1 = v_f(a) + 1 = v_f(b) = v_f(c)$ | $e_f(0) + 1 = e_f(a) = e_f(b) + 1 = e_f(c)$ | | 3 | $v_f(0) + 1 = v_f(a) + 1 = v_f(b) + 1 = v_f(c)$ | $e_f(0) + 1 = e_f(a) = e_f(b) + 1 = e_f(c) + 1$ | Illustration 2.4 The armed crown AC_5 and its V_4 -cordial labeling is shown in Fig. 2. Fig. 2. V_4 -cordial labeling of an armed crown AC_5 **Theorem 2.5.** The Pan Graph C_n^{+1} is V_4 -cordial for all n. **Proof.** Let $G = C_n^{+1}$ be the cycle with one pendant edge known as Pan graph. Let $v_1, v_2, ..., v_n$ be the cycle vertices and v' be the pendant vertex. We note that |V(G)| = n+1 and |E(G)| = n+1. To define V_4 -cordial labeling $f:V(G)\to V_4$ we consider the following cases. ``` Case 1: n \equiv 0 \pmod{8}. f(v_i) = 0; i \equiv 0, 7 (mod 8); i \equiv 1, 5 \pmod{8}; f(v_i) = a; f(v_i) = b; i \equiv 4,6 (mod 8); f(v_i) = c; i \equiv 2, 3 \pmod{8}; 1 \le i \le n, f(v') = a. \underline{\text{Case 2}} \colon n \equiv 1 (mod 8). f(v_i) = 0; i \equiv 0,7 (mod 8); f(v_i) = a; i \equiv 1, 5 \pmod{8}; f(v_i) = b; i \equiv 4, 6 \pmod{8}; f(v_i) = c; i \equiv 2, 3 \pmod{8}; 1 \le i \le n, f(v') = c. Case 3: n \equiv 2 \pmod{8}. f(v_i) = 0; i \equiv 0,7 (mod 8); i \equiv 1, 5 \pmod{8}; f(v_i) = a; f(v_i) = b; i \equiv 4, 6 \pmod{8}; 1 \le i \le n - 3, f(v_i) = c; i \equiv 2, 3 \pmod{8}; f(v_{n-2}) = a; f(v_{n-1}) = b; f(v_n) = 0; f(v') = 0. ``` ``` Case 4: n \equiv 3 \pmod{8}. f(v_i) = 0; i \equiv 0, 7 (mod 8); f(v_i) = a; i \equiv 1, 5 \pmod{8}; f(v_i) = b; i \equiv 4, 6 \pmod{8}; f(v_i) = c; i \equiv 2, 3 \pmod{8}; 1 \le i \le n-5, f(v_{n-4}) = a; f(v_{n-3}) = c; f(v_{n-2}) = b; f(v_{n-1}) = 0; f(v_n)=0; f(v') = 0. Case 5: n \equiv 4, 5, 7 \pmod{8}. f(v_i) = 0; i \equiv 0, 7 (mod 8); f(v_i) = a; i \equiv 1, 5 \pmod{8}; f(v_i) = b; i \equiv 4, 6 \pmod{8}; i \equiv 2, 3 \pmod{8}; f(v_i) = c; 1 \le i \le n, f(v') = 0. Case 6: n \equiv 6 \pmod{8}. f(v_i) = 0; i \equiv 0,7 (mod 8); f(v_i) = a; i \equiv 1, 5 \pmod{8}; f(v_i) = b; i \equiv 4,6 \pmod{8}; f(v_i) = c; i \equiv 2, 3 \pmod{8}; 1 \le i \le n - 3, f(v_{n-2}) = 0; f(v_{n-1}) = b; f(v_n) = a; f(v') = 0. ``` The Table 3 shows that the labeling pattern defined above covers all possible arrangement of vertices. In each possibility the graph under consideration satisfies the vertex conditions and edge conditions for V_4 -cordial labeling. Hence, the Pan Graph C_n^{+1} is V_4 -cordial for all n. Let n = 8p + q, where $p, q \in N \cup \{0\}$. Table 3 | \mathbf{q} | Vertex conditions | Edge conditions | |--------------|-------------------------------------------------|-------------------------------------------------| | 0 | $v_f(0) + 1 = v_f(a) = v_f(b) + 1 = v_f(c) + 1$ | $e_f(0) + 1 = e_f(a) = e_f(b) + 1 = e_f(c) + 1$ | | 1 | $v_f(0) + 1 = v_f(a) = v_f(b) + 1 = v_f(c)$ | $e_f(0) = e_f(a) + 1 = e_f(b) = e_f(c) + 1$ | | 2 | $v_f(0) = v_f(a) = v_f(b) = v_f(c) + 1$ | $e_f(0) + 1 = e_f(a) = e_f(b) = e_f(c)$ | | 3,7 | $v_f(0) = v_f(a) = v_f(b) = v_f(c)$ | $e_f(0) = e_f(a) = e_f(b) = e_f(c)$ | | 4 | $v_f(0) + 1 = v_f(a) + 1 = v_f(b) + 1 = v_f(c)$ | $e_f(0) + 1 = e_f(a) + 1 = e_f(b) = e_f(c) + 1$ | | 5 | $v_f(0) + 1 = v_f(a) = v_f(b) + 1 = v_f(c)$ | $e_f(0) = e_f(a) = e_f(b) + 1 = e_f(c) + 1$ | | 6 | $v_f(0) = v_f(a) = v_f(b) + 1 = v_f(c)$ | $e_f(0) = e_f(a) + 1 = e_f(b) = e_f(c)$ | Illustration 2.6 The pan graph C_5^{+1} and its V_4 -cordial labeling is shown in Fig. 3. Fig. 3. V_4 -cordial labeling of Pan graph C_5^{+1} **Theorem 2.7.** The Corona $C_n \odot mK_1$ of cycle C_n and m complete graph K_1 is V_4 -cordial for all n and m. ``` Proof. Let G = C_n \odot mK_1 be the corona of cycle C_n and m complete graph K_1. Let v_1, v_2, ..., v_n be the cycle vertices and v_{11}, v_{12}, ..., v_{1m}, v_{21}, v_{22}, ..., v_{2m}, v_{31}, v_{32}, ..., v_{3m}, ..., v_{i1}, v_{i2}, ..., v_{ij}, ..., v_{im}, ..., v_{n1}, v_{n2}, ..., v_{nm}, ..., v_{nm} ``` be the vertices of m complete graph K_1 , where $1 \le i \le n$ and $1 \le j \le m$. We note that |V(G)| = (m+1)n and |E(G)| = (m+1)n. To define V_4 -cordial labeling $f:V(G)\to V_4$ we consider the following cases. ``` Case 1: n \equiv 0 \pmod{4}. ``` Label the vertices $v_1, v_2, ..., v_n$ of cycle as follows. ``` f(v_i) = 0; i \equiv 0 \pmod{4}; f(v_i) = a; i \equiv 1 \pmod{4}; f(v_i) = b; i \equiv 2 \pmod{4}; f(v_i) = c; i \equiv 3 \pmod{4}; 1 \le i \le n. ``` The labeling pattern of the vertices $v_{1j}, v_{2j}, ..., v_{nj}$, where $1 \le j \le m$ is divided into following two subcases. ## Subcase 1: m = 1. ``` f(v_{i1}) = 0; i \equiv 2(mod4); f(v_{i1}) = a; i \equiv 1(mod4); f(v_{i1}) = b; i \equiv 0(mod4); f(v_{i1}) = c; i \equiv 3(mod4); 1 \le i \le n. ``` ## Subcase 2: m > 1. ``` f(v_{ij}) = 0; i \equiv 2(mod4); f(v_{ij}) = a; i \equiv 1(mod4); f(v_{ij}) = b; i \equiv 3(mod4); f(v_{ij}) = c; i \equiv 0(mod4); 1 \le i \le n \text{ and } 2 \le j \le m. ``` ``` Case 2: n \equiv 1 \pmod{4}. Label the vertices v_1, v_2, ..., v_n of cycle as follows. f(v_i) = 0; i \equiv 0 \pmod{4}; f(v_i) = a; i \equiv 1 \pmod{4}; f(v_i) = b; i \equiv 2 \pmod{4}; f(v_i) = c; i \equiv 3 \pmod{4}; 1 \le i \le n-1, f(v_n) = 0. ``` The labeling pattern of the vertices $v_{1j}, v_{2j}, ..., v_{nj}$, where $1 \leq j \leq m$ is divided into following subcases. ``` Subcase 1: m = 1. f(v_{i1}) = 0; \quad i \equiv 2(mod4); f(v_{i1}) = a; i \equiv 1 \pmod{4}; f(v_{i1}) = b; i \equiv 0 \pmod{4}; 1 \le i \le n - 1, f(v_{i1}) = c; i \equiv 3(mod4); f(v_{n1}) = a. Subcase 2: m \equiv 0 \pmod{4}. f(v_{ij}) = 0; i \equiv 2(mod 4); f(v_{ij}) = a; \quad i \equiv 1 \pmod{4}; f(v_{ij}) = b; i \equiv 3 \pmod{4}; f(v_{ij}) = c; i \equiv 0 (mod 4); 1 \le i \le n-1 \text{ and } 2 \le j \le m, f(v_{nj}) = 0. Subcase 3: m \equiv 1 \pmod{4}. f(v_{ij}) = 0; i \equiv 2 (mod 4); f(v_{ij}) = a; i \equiv 1 \pmod{4}; f(v_{ij}) = b; i \equiv 3 \pmod{4}; i \equiv 0 (mod 4); 1 \le i \le n-1 and 2 \le j \le m, f(v_{ij}) = c; f(v_{nj}) = a. Subcase 4: m \equiv 2 \pmod{4}. f(v_{ij}) = 0; i \equiv 2(mod4); i \equiv 1 \pmod{4}; f(v_{ij}) = a; f(v_{ij}) = b; i \equiv 3 \pmod{4}; i \equiv 0 (mod 4); 1 \le i \le n-1 and 2 \le j \le m, f(v_{ij}) = c; f(v_{nj}) = b. Subcase 5: m \equiv 3 \pmod{4}. f(v_{ij}) = 0; i \equiv 2 \pmod{4}; f(v_{ij}) = a; i \equiv 1 \pmod{4}; f(v_{ij}) = b; i \equiv 3 \pmod{4}; i \equiv 0 (mod 4); 1 \le i \le n-1 and 2 \le j \le m, f(v_{ij}) = c; f(v_{nj}) = c. ``` Case 3: $n \equiv 2 \pmod{4}$. Label the vertices $v_1, v_2, ..., v_n$ of cycle as follows. ``` f(v_i) = 0; i \equiv 0 \pmod{4}; f(v_i) = a; i \equiv 1 (mod 4); f(v_i) = b; i \equiv 2(mod4); f(v_i) = c; i \equiv 3 \pmod{4}; 1 \le i \le n - 2, f(v_{n-1}) = 0; f(v_n) = c. The labeling pattern of the vertices v_{1j}, v_{2j}, ..., v_{nj}, where 1 \leq j \leq m is divided into following subcases. Subcase 1: m = 1. f(v_{i1})=0; i \equiv 2 (mod 4); f(v_{i1}) = a; i \equiv 1 (mod 4); i \equiv 0 \pmod{4}; f(v_{i1}) = b; f(v_{i1}) = c; i \equiv 3 \pmod{4}; 1 \le i \le n - 1, f(v_{n1}) = b. Subcase 2: m \equiv 0 \pmod{2}. f(v_{ij}) = 0; i \equiv 2(mod4); f(v_{ij}) = a; i \equiv 1 (mod 4); f(v_{ij}) = b; i \equiv 3 \pmod{4}; f(v_{ij}) = c; i \equiv 0 \pmod{4}; 1 \le i \le n \text{ and } 2 \le j \le m. Subcase 3: m \equiv 1 \pmod{2}. f(v_{ij}) = 0; \quad i \equiv 2(mod4); f(v_{ij}) = a; \quad i \equiv 1 \pmod{4}; f(v_{ij}) = b; \quad i \equiv 3(mod4); f(v_{ij}) = c; i \equiv 0 \pmod{4}; 1 \le i \le n-2 \text{ and } 2 \le j \le m, f(v_{(n-1)j}) = b; f(v_{nj})=c. Case 4: n \equiv 3 \pmod{4}. Label the vertices v_1, v_2, ..., v_n of cycle as follows. i \equiv 0 \pmod{4}; f(v_i) = 0; f(v_i) = a; i \equiv 1 \pmod{4}; f(v_i) = b; i \equiv 2(mod4); f(v_i) = c; i \equiv 3 \pmod{4}; 1 \le i \le n. The labeling pattern of the vertices v_{1j}, v_{2j}, ..., v_{nj}, where 1 \leq j \leq m is divided into following subcases. Subcase 1: m = 1. f(v_{ij}) = 0; i \equiv 2(mod4); i \equiv 1 (mod 4); f(v_{ij}) = a; f(v_{ij}) = b; i \equiv 0 (mod 4); f(v_{ij}) = c; \quad i \equiv 3(mod4); 1 \le i \le n. ``` ``` Subcase 2: m \equiv 0 \pmod{8}. f(v_{ij}) = 0; i \equiv 2(mod 4); i \equiv 1 \pmod{4}; f(v_{ij}) = a; f(v_{ij}) = b; i \equiv 3 \pmod{4}; f(v_{ij}) = c; i \equiv 0 \pmod{4}; 1 \le i \le n-3 and 2 \le j \le m, f(v_{(n-2)j}) = b; f(v_{(n-1)j}) = c; f(v_{nj}) = a. Subcase 3: m \equiv 1 \pmod{8}. f(v_{ij}) = 0; \quad i \equiv 2(mod4); i \equiv 1 \pmod{4}; f(v_{ij}) = a; i \equiv 3 (mod 4); f(v_{ij}) = b; i \equiv 0 \pmod{4}; 1 \le i \le n-1 and 2 \le j \le m, f(v_{ij}) = c; f(v_{nj}) = c. Subcase 4: m \equiv 2 \pmod{8}. f(v_{ij}) = 0; i \equiv 2(mod4); i \equiv 1 \pmod{4}; f(v_{ij}) = a; f(v_{ij}) = b; i \equiv 3 \pmod{4}; f(v_{ij}) = c; i \equiv 0 \pmod{4}; 1 \le i \le n-3 \text{ and } 2 \le j \le m, f(v_{(n-2)j}) = 0; f(v_{(n-1)j}) = a; f(v_{nj}) = b. Subcase 5: m \equiv 3 \pmod{8}. f(v_{ij}) = 0; i \equiv 2 \pmod{4}; i \equiv 1 \pmod{4}; f(v_{ij}) = a; f(v_{ij}) = b; \quad i \equiv 3(mod4); f(v_{ij}) = c; i \equiv 0 \pmod{4}; 1 \le i \le n-3 and 2 \le j \le m, f(v_{(n-2)j}) = b; f(v_{(n-1)j}) = 0; f(v_{nj}) = c. Subcase 6: m \equiv 4 \pmod{8}. f(v_{ij}) = 0; \quad i \equiv 2(mod4); f(v_{ij}) = a; i \equiv 1 (mod 4); f(v_{ij}) = b; i \equiv 3 \pmod{4}; f(v_{ij}) = c; i \equiv 0 \pmod{4}; 1 \le i \le n-3 \text{ and } 2 \le j \le m, f(v_{(n-2)j}) = a; f(v_{(n-1)j}) = c; f(v_{nj}) = 0. Subcase 7: m \equiv 5 \pmod{8}. f(v_{ij}) = 0; \quad i \equiv 2(mod4); f(v_{ij}) = a; \quad i \equiv 1 \pmod{4}; f(v_{ij}) = b; \quad i \equiv 3(mod4); f(v_{ij}) = c; i \equiv 0 \pmod{4}; 1 \le i \le n-3 \text{ and } 2 \le j \le m, ``` ``` f(v_{(n-2)j}) = b; f(v_{(n-1)j}) = 0; f(v_{nj}) = c. Subcase 8: m \equiv 6 \pmod{8}. f(v_{ij}) = 0; i \equiv 2(mod 4); f(v_i) = a; i \equiv 1 \pmod{4}; f(v_{ij}) = b; i \equiv 3 \pmod{4}; 1 \le i \le n-3 \text{ and } 2 \le j \le m, f(v_{ij}) = c; \quad i \equiv 0 \pmod{4}; f(v_{(n-2)j}) = c; f(v_{(n-1)j}) = a; f(v_{nj}) = b. Subcase 9: m \equiv 7 \pmod{8}. f(v_{ij}) = 0; i \equiv 2(mod 4); f(v_{ij}) = a; i \equiv 1 (mod 4); f(v_{ij}) = b; i \equiv 3 \pmod{4}; f(v_{ij}) = c; i \equiv 0 \pmod{4}; 1 \le i \le n-3 and 2 \le j \le m, f(v_{(n-2)j}) = 0; f(v_{(n-1)j}) = b; f(v_{nj}) = a. ``` The Table 4 shows that the labeling pattern defined above covers all possible arrangement of vertices. In each possibility the graph under consideration satisfies the vertex conditions and edge conditions for V_4 -cordial labeling. Hence, the Corona $C_n \odot mK_1$ is V_4 -cordial for all n and m. Let n = 4p + q and (j = 1, 2, 3, ..., m), where $m, p, q \in N \cup \{0\}$. Table 4 | q | m | Vertex conditions | Edge conditions | |---|-------------------------|---------------------------|---------------------------| | 0 | $m \equiv 0, 1 (mod 2)$ | $v_f(0) = v_f(a)$ | $e_f(b) = e_f(c)$ | | | | $v_f(b) = v_f(c)$ | $e_f(b) = e_f(c)$ | | 1 | $m \equiv 0 (mod 4)$ | $v_f(0) = v_f(a) + 1$ | $e_f(0) = e_f(a) + 1$ | | | | $v_f(b) + 1 = v_f(c) + 1$ | $e_f(b) + 1 = e_f(c) + 1$ | | | $m \equiv 1 (mod 4)$ | $v_f(0) = v_f(a)$ | $e_f(0) = e_f(a)$ | | - | 2(11) | $v_f(b) + 1 = v_f(c) + 1$ | $e_f(b) + 1 = e_f(c) + 1$ | | | $m \equiv 2 (mod 4)$ | $v_f(0) = v_f(a)$ | $e_f(0) = e_f(a)$ | | | - / / | $v_f(b) = v_f(c) + 1$ | $e_f(b) = e_f(c) + 1$ | | | $m \equiv 3 (mod 4)$ | $v_f(0) = v_f(a)$ | $e_f(0) = e_f(a)$ | | | | $v_f(b) = v_f(c)$ | $e_f(b) = e_f(c)$ | | 2 | $m \equiv 0 (mod 2)$ | $v_f(0) = v_f(a)$ | $e_f(0) + 1 = e_f(a)$ | | | | $v_f(b) + 1 = v_f(c) + 1$ | $e_f(b) + 1 = e_f(c)$ | | | $m \equiv 1 (mod 2)$ | $v_f(0) = v_f(a)$ | $e_f(0) = e_f(a)$ | | | - / > | $v_f(b) = v_f(c)$ | $e_f(b) = e_f(c)$ | | 3 | $m \equiv 0 (mod 8)$ | $v_f(0) + 1 = v_f(a)$ | $e_f(0) + 1 = e_f(a)$ | | | | $v_f(b) = v_f(c)$ | $e_f(b) = e_f(c)$ | | | $m \equiv 1 (mod 8)$ | $v_f(0) + 1 = v_f(a)$ | $e_f(0) = e_f(a) + 1$ | | | - / > | $v_f(b) + 1 = v_f(c)$ | $e_f(b) = e_f(c) + 1$ | | | $m \equiv 2 (mod 8)$ | $v_f(0) + 1 = v_f(a)$ | $e_f(0) + 1 = e_f(a)$ | | | | $v_f(b) + 1 = v_f(c) + 1$ | $e_f(b) + 1 = e_f(c) + 1$ | | | $m \equiv 3,7 (mod 8)$ | $v_f(0) = v_f(a)$ | $e_f(0) = e_f(a)$ | | | | $v_f(b) = v_f(c)$ | $e_f(b) = e_f(c)$ | | | $m \equiv 4 (mod 8)$ | $v_f(0) = v_f(a)$ | $e_f(0) = e_f(a)$ | | | -/ | $v_f(b) + 1 = v_f(c)$ | $e_f(b) + 1 = e_f(c)$ | | | $m \equiv 5 (mod 8)$ | $v_f(0) = v_f(a) + 1$ | $e_f(0) = e_f(a) + 1$ | | | - () | $v_f(b) + 1 = v_f(c)$ | $e_f(b) + 1 = e_f(c)$ | | | $m \equiv 6 (mod 8)$ | $v_f(0) + 1 = v_f(a) + 1$ | $e_f(0) + 1 = e_f(a) + 1$ | | | | $v_f(b) + 1 = v_f(c)$ | $e_f(b) + 1 = e_f(c)$ | Illustration 2.8 The corona graph $C_4 \odot 5K_1$ and its V_4 -coordial labeling is shown in Fig. 4. Fig. 4 V_4 -cordial labeling of corona $C_4 \odot 5K_1$ ## 3 Concluding Remarks From the above study it can be concluded that a Graph can be labeled by either of the two techniques (4-cordial and V4-cordial) in some cases may be by both of them and in certain cases may be by neither of them. Thus 4-cordial and V4-cordial labeling techniques do not show any inter-dependence and can be considered to be two distinct graph labeling techniques. Following are illustrative examples of the mentioned facts. - 1. The Path P_4 is 4-cordial proved by M. Hovey [6] but not V_4 -cordial proved by M. Seenivasan and A. Lourdusamy [4]. - 2. The Star $K_{1,n}$ are 4-cordial proved by M. Hovey [6] and V_4 -cordial proved by A. Riskin [3]. - 3. The Cycle C_4 is neither 4-cordial proved by M. Hovey [6] nor V_4 -cordial proved by A. Lourdusamy [4]. # Competing interests Authors have declared that no competing interests exist. ## References - Gallian JA. A dynamic survey of graph labeling. The Electronics Journal of Combinatorics. 2015;18. - [2] Gross JA and Yellen J. Handbook of graph theory CRC Press; 2004. - [3] Riskin A. \mathbb{Z}_2^2 -coordiality of K_n and $K_{m,n}$. arXiv:0709.0290; 2013. - [4] Seenivasan M and Lourdusamy A. Some V_4 -cordial graphs. Sciencia Acta Xaveriana. 2010;1(1):91-99. - [5] Pechenik O and Wise J. Generalized graph cordialty. Discuss. Math. Graph Th. 2012;32(3):557-567 - [6] Hovey M. A-cordial graphs. Discrete Math. 1991;93:183-194. © 2016 Rathod and Kanani; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ## Peer-review history: The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar) http://sciencedomain.org/review-history/12718