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Abstract 
 

 In this paper we introduce the concept of Ramadan Group integral transform substitution (RGTS)  
method to solve some types of Partial differential equations. This new method is a convenient way to find 
exact solution with less computational cost as compared with method of separation of variables (MSV) 
and variation iteration method (VIM). The proposed method solves linear partial differential equations 
involving mixed partial derivatives. 
 

 
Keywords: Nonlinear partial differential equations; Ramadan Group transformation; Adomian 

decomposition method; Laplace substitution method. 
 

1 Introduction 
 
Nonlinear partial differential equations (NLPDEs) involving mixed partial derivatives are mathematical 
models that are used to describe complex Phenomena arising in the world around us. The nonlinear equations 
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appear in many applications of science and engineering such as fluid dynamics, plasma physics, 
hydrodynamics, solid state physics, optical fibers and other disciplines. In the recent years, many authors 
mainly had paid attention to study solutions of NLPDEs by using various methods, for example variation 
iteration method, Adomian decomposition [1] and Laplace substitution method [2]. Partial differential 
equations have big importance in Mathematics and other fields of science. Therefore, it is very important to 
know methods to solve such partial differential equations. One of the most known methods to solve partial 
differential equations is the Ramadan Group transform (RGT) method [3,4] which is considered to be the 
generalization of the known integral transforms as Laplace transform method [5,6,7,8] and Sumudu 
transform method [9]. The key motivation for pursuing theories for integral transforms is that it gives a 
simple tool which is represented by an algebraic problem in the process of solving differential equations.  An 
intrinsic structure and properties of Laplace-typed integral transforms , see Hwajoon Kim [10].      
 
In this paper we try to solve some types of partial differential equations using the proposed RGTS method.  
In the following section we give a summary for RGT.    
 

2 Ramadan Group Transformation (RGT) [3,4] 
 
A new integral Ramadan Group transform (RGT) defined for functions of exponential order, was 
proclaimed. We consider functions in the set A, defined by:  
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This transform which is a generalization of Laplace and Sumudu transforms is introduced by M.A. Ramadan 
et al. [3,4] and, accidentally and unpredictably, it was also introduced by Z. H. Khan and W. A. Khan [11] 
under the name of N-Transform.  A theoretical study of this natural transform is investigated by F. Belgacem 
and R. Silambarasan [12]. Further investigations for the new integral transform on time scales and its 
applications is considered by H. A. Agwa et al. [13].  
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transforms respectively, then we can write the following theorem. 
 
Theorem 1 [3] 
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Theorem 2 [3] 
 
 suppose K(s,u) is the Ramadan Group transform of the function )(tf   then 
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Ramadan Group transform of some functions 
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The main goal of this paper is to describe new method for solving linear partial differential equations 
involving mixed partial derivatives. This powerful method will be proposed in Section 3; in Section 4 we 
will apply it to some examples and in last section we give some conclusion. 
 

3 Ramadan Group Integral Transform Substitution (RGTS) Method  
 
The aim of this section is to discuss the Ramadan Group integral transform substitution method. We consider 
the general form of non homogeneous partial differential equation with initial conditions is given below  

 
                                                                                           (3.1) 
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derivatives of ),( yxu   with respect to either ),( yxhandyorx  is the source term. We can write 
equation (3.1) in following form 
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Putting ),( yxU
y

u =
∂
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 in equation (3.3), we get  
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Taking Ramadan Group transform of equation (3.4) with respect to x, we get  
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Taking inverse Ramadan Group transform of equation (3.5) with respect to x, we get 

 
 
                                                (3.6) 

 
Resubstitute the value of U(x, y) in equation (2.6), we get 
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This is a first order partial differential equation in the variables x and y. 
 
Taking Ramadan Group transform of equation (3.7) with respect to y, we get 
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Taking the inverse Ramadan Group transform of equation (3.8) with respect to y, we get 
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The last equation (3.9) gives the exact solution of initial value problem (3.1). 
 
In the following section we will apply RGT for Partial Differential Equations. 
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4 Applications of RGTS Method 
 
Example 1. 
 
 Consider the partial differential equation  
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With the initial conditions  
 

0)0,(,0),0( == xuyuy  ,                                                                                                      (4.2) 

and general linear term  xeyxh y cos),( −= , 
yx

u
yxLu

∂∂
∂=

2

),( , Equation (4.1) we can write in the 

following form 
  

,cos)( xe
y

u

x
y−=

∂
∂

∂
∂

                                                                                                               (4.3) 

In Equation (3.3), substantiation U
y

u =
∂
∂

, we get 

,cosxe
x

U y−=
∂
∂

                                                                                                                        (4.4) 

This is the non homogeneous partial differential equation of first order. Taking Ramadan Group transform on 
both sides of equation (4.4) with respect to x, we get 
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Taking inverse Ramadan Group transform of equation (4.5) with respect to x, we get  
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This is the partial differential equation of first order in the variables x and y. Taking Ramadan Group integral 
transform of equation (4.6) with respect to y, we get 
  

]sin[
)0,()],([

xeRG
u

xuyxusRG y
y

y −=
−

 

 
 
                                                                                                      (4.7) 

 
Taking inverse Ramadan Group integral transform of equation (4.7) with respect to y, we get  
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This is the required exact solution of equation (1). This can be verifying though the substitution. 
 
Example 2. Consider the partial differential equation 
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Given initial conditions (4.10) force to write the equation (4.9) in the following form and use the substitution. 
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This is the non homogeneous partial differential equation of first order. Taking Ramadan Group transform on 
both sides of equation (4.11) with respect to x, we get  
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Taking inverse Ramadan Group transform of equation (4.13) with respect to x, we get 
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This is the partial differential equation of first order in the variables x and y. Taking Ramadan Group 
transform of equation (4.14) with respect to y, we get  
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Taking inverse Ramadan Group integral transform of equation (4.15) with respect to y, we get  
 

 
 

 
This is the required exact solution of equation (4.9). This can be verifying though the substitution. 
 
Example 3. Consider the partial differential equation 
 
Consider the partial differential equation 

 
 

                                                                                                      (4.16)  
 
 

with initial conditions 
 

xy
y exfeyf =−= − )0,(,),0(                                                                                               (4.17)   

 
Equation (4.16) we can write in the following form 
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This is the non homogeneous partial equation of first order. Taking Ramadan Group transform on both sides 
of equation (4.19) with respect to x, we get 
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Taking inverse Ramadan Group transform of equation (4.20) with respect to x, we get  
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Taking Ramadan Group transform of equation (4.21) with respect to y, we get       
 

us

e

u

xfyxfsRG x
y

+
−=

− )0,()],([
 

 x
x

y e
uss

u

s

e
yxfRG

)(
)],([

+
−=                                                                                         (4.22) 

 
Taking inverse Ramadan Group transform of equation (4.22) with respect to y, we get 
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This is the require d exact solution of equation (4.16) which can be verified through the substitution. 
 
Example 4.  Consider the partial differential equation 
 

yee
yx

f xx cos
2

+=
∂∂

∂
                                                                                                                    (4.24) 

 
With initial conditions 
 

0)0,(,1),0( == xfyf y                                                                                                (4.25) 

 
Equation (4.24) we can write in the following form 
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This is the non homogeneous partial equation of first order. Taking Ramadan Group transform on both sides 
of equation (4.27) with respect to x, we get 
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Taking inverse Ramadan Group transform of equation (4.28) with respect to x, we get 
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Taking Ramadan Group transform of equation (4.29) with respect to y, we get 
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Taking inverse Ramadan Group transform of equation (4.30) with respect to y, we get 
 

)1(sin),( −+= xx eyyeyxf                                                                                                 (4.31) 
 
This is the required exact solution of equation (4.24). Which can be verify through the substitution. 
 

5 Conclusion 
  
In this paper, Ramadan Group Transform Substitution (RGTS) Method is applied to solve partial differential 
equations in which involves the mixed partial derivatives and general linear term.  The proposed method is a 
generalization of any integral transform substitution available methods for this type of considered problems.  
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