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Abstract 
The cigarette detection data contains a large amount of true sample data and 
a small amount of false sample data. The false sample data is regarded as ab-
normal data, and anomaly detection is performed to realize the identification 
of real and fake cigarettes. Binary particle swarm optimization algorithm is 
used to improve the isolation forest construction process, and isolation trees 
with high precision and large differences are selected, which improves the 
accuracy and efficiency of the algorithm. The distance between the obtained 
anomaly score and the clustering center of the k-means algorithm is used as 
the threshold for anomaly judgment. The experimental results show that the 
accuracy of the BPSO-iForest algorithm is improved compared with the 
standard iForest algorithm. The experimental results of multiple brand sam-
ples also show that the method in this paper can accurately use the detection 
data for authenticity identification. 
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1. Introduction 

Anomaly is a data form that is different from the data characteristics under 
normal conditions. The study of classifying normal data and abnormal data is 
called anomaly detection. Anomaly detection is one of the important tasks of 
data mining [1]. Many scholars have put forward a series of ideas and methods 
in this field, forming a relatively complete system. The main anomaly detection 
methods can be divided into statistics-based [2], distance-based [3], densi-
ty-based [4], model-based [5] [6], etc. according to the detection principle. 
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However, in reality, it is sometimes difficult to obtain enough anomaly data for 
training, and the collected data is often unbalanced, resulting in a decrease in the 
performance of many anomaly detection algorithms [7]. Isolation forest algo-
rithm proposed by Liu et al. [8] calculates anomaly scores based on the path 
length obtained by the sample in multiple binary trees, and then judges the 
anomaly. Compared with other anomaly detection algorithms, this algorithm 
has linear time complexity, and the accuracy is good when there are few or 
missing abnormal data in the training set. Isolated forest algorithm has many 
practical applications, such as monitoring production abnormalities [9] [10], 
abnormal target detection [11], and data error detection [12] [13]. In actual 
work, we have collected physical and chemical cigarette testing data with many 
characteristic dimensions. Among them, the true samples account for the major-
ity, and the fake samples account for a small proportion, which can be regarded 
as abnormal data, which meets the data requirements of the isolation forest al-
gorithm. This paper is based on the isolation forest algorithm to verify the au-
thenticity of the detection data. The detection data of real cigarettes and fake 
cigarettes have different degrees of discrimination in different feature dimen-
sions, which leads to different detection capabilities of each tree in the isolation 
forest, but their weights for anomaly scores are the same, so some detection ca-
pabilities are insufficient trees which may have a negative effect on the final re-
sult and waste computing resources. This article draws on the improved isola-
tion forest method proposed by Wu et al. [14], selects isolation trees with high 
accuracy and large differences to optimize the forest, and removes redundant 
isolation trees. For the anomaly scores, a threshold is needed for anomaly judg-
ment. Based on the idea of K-means algorithm, this paper calculates the cluster 
centers of the abnormal scores of normal samples and abnormal samples, and 
judges abnormalities by distance. 

2. Improved Isolation Forest 
2.1. Isolation Forest 

Isolation forest (iForest) algorithm is a commonly used unsupervised anomaly 
detection algorithm and is suitable for high-dimensional data sets. Different 
from other anomaly detection algorithms, iForest no longer describes normal 
sample points, but isolates abnormal points [15]. In iForest, anomaly points are 
defined as “more likely to be separated points”, which can be understood as 
points that are sparsely distributed and far away from densely populated groups. 
In the feature space, sparsely distributed regions indicate that the probability of 
events occurring in this region is very low, so the data falling in these regions 
can be considered abnormal. In actual inspection work, the amount of data on 
fake cigarettes is very small and can be regarded as abnormal data. 

iForest is integrated by multiple iTree, iTree and binary search tree have the 
same structure. In iTrees, the data set is randomly divided recursively until all 
sample points are isolated or iTrees reach the set height. Under this random 
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segmentation strategy, abnormal points usually have shorter paths, as shown in 
Figure 1, the abnormal points are quickly separated. Intuitively speaking, ab-
normal points are split at the lower level and the path traversed on iTrees is 
shorter, while the normal point is split at the higher level and the path traversed 
on iTrees is longer. 

iForest can be divided into two steps [16]: 
Training iTrees: Take samples from the train set, build isolation trees (iTrees), 

iTrees composition iForest. 
Calculate anomaly score: Record the length of the test set samples on iTrees. 

Calculate the anomaly score of each sample point according to the anomaly 
score calculation equation. 

The following is the detailed algorithm flow: 
1) Training iTrees: 

• Randomly select n points from the training data as sub-samples, and put 
them into the root node of an isolated tree; 

• Randomly select a dimension, and randomly generate a cutting point p 
within the range of the current node data-the cutting point is generated be-
tween the maximum and minimum values of the specified dimension in the 
current node data; 

• The p point divides the current node data space into 2 subspaces: put the 
points less than p on the left branch of the current node, and put the points 
greater than or equal to p on the right branch of the node; 

• Recursively perform two steps on the left and right branch of the node, and 
continue to construct new leaf nodes until there is only one data on the leaf 
node (can no longer be cut), or the tree has grown to the set height. 

2) Calculate anomaly score: 
After obtaining iTrees, we can use iTrees to calculate the anomaly score. For 

each sample x, the result of each tree needs to be calculated comprehensively, 
and the anomaly score is calculated by the following equations: 

( )
( )( )
( ), 2

E h x
c ns x n

−

=                        (1) 

( ) ( ) ( )2 1
2 1

n
c n H n

n
−

= − −                    (2) 

 

 
Figure 1. Normal and abnormal points in iTrees. 
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In Equation (1), E(h(x)) is the average value of h(x) on the set of isolation 
trees. 

( ) ( )lnH k k γ= +                        (3) 

In Equation (3), γ  is Euler constant. 
h(x) is the height of x in each tree, and c(n) is the average value of the path 

length, which is used to standardize the path length h(x) of the sample x. 
According to Equation (1): 

( )( ) ( )E h x c n→ , 0.5s → , the samples may not have obvious abnormal 
points; 

( )( ) 0E h x → , 1s → , which can be regarded as abnormal point; 
( )( ) 1E h x n→ − , 1n ≥ , 0s → , can be regarded as a normal point. 

According to the relationship between the number of iTrees and the average 
height of each sample point in the reference [8], it can be seen that when the 
number is selected within 10, the result is very unstable. When the number 
reaches 100, it tends to converge. Therefore, in this paper, the number of trees is 
set to 100, which can save system overhead while ensuring stable results. 

2.2. BPSO 

Particle Swarm Optimization Algorithm (PSO) originated from the analysis of 
bird foraging activities and simulates the foraging process of birds. The search 
space of the problem to be solved is regarded as the space where birds fly, and 
each bird is abstracted into a space without mass and size. Use this particle to 
represent a feasible solution to the problem to be solved. Therefore, the process 
of finding the optimal solution is equivalent to the process of foraging for birds. 

In an initialized particle swarm, the position and velocity of each particle are 
randomly generated. The particle position represents the current solution, and 
the velocity represents the vector direction of the particle’s current solution and 
the next solution. In the solution space, the particles update the speed and posi-
tion of each particle according to certain rules, so that each particle moves to the 
best position in its own history and the best position in the global history, so as 
to realize the evolution of the entire population toward the optimal direction 
[17]. 

Assuming that the dimension of the search space is D and the number of par-
ticles in the space is N, the position of the particles can be expressed as a vector: 

( )    
1 2, , ,i i i iDX x x x= 

                      (4) 

The flying speed of a particle can also be expressed as a vector: 

( )    
1 2, , ,i i i iDV v v v= 

                       (5) 

The optimal individual extremum of the i-th particle itself can be expressed as: 

( )    
1 2, , ,best i i iDp p p p= 

                     (6) 

The global optimal extremum of the entire particle swarm can be expressed as: 
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( )    
1 2, , ,best Dg g g g= 

                      (7) 

In the iterative process of the algorithm, all particles update their speed and 
position according to the following equations: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  
1 1 , 2 21i i i best i best iv t v t c r t p t x t c r t g t x tω  + = + − + −       (8) 

( ) ( ) ( ) 1 1i i iX t X t v t+ = + +                    (9) 

In Equation (8), c1 and c2 are constants set by experience, r1 and r2 are un-
iformly distributed random numbers in the range [0, 1]. ω  is inertia weight, 
the larger ω , the stronger the global search ability and the weaker the local 
search ability, on the contrary, the weaker the global search ability and the 
stronger the local search ability [18]. For the value of ω , a dynamic method can 
be used. At the beginning of the iteration, a larger inertia weight can be set, so 
that the algorithm has a strong global search capability. As the number of itera-
tions of the algorithm increases, the inertia weight coefficient can be reduced to 
ensure that the particles can have a strong local search ability and perform a de-
tailed global search around the extreme points. The value of ω  in this paper is 
as follows: 

( )max min
max

max

t
T

ω ω
ω ω

− ⋅
= −                    (10) 

The set selection of iTrees in this article is a discrete problem, and the stan-
dard PSO algorithm is mainly aimed at continuous problems. For this type of 
discrete problem, Kennedy, J. et al. [19] proposed Binary Particle Swarm Opti-
mization algorithm (BPSO). 

In BPSO, the discrete space is mapped to the continuous space, and appropri-
ate modifications are made. Still retaining the PSO’s velocity-position update 
strategy, the value of the particle in the state space is limited to 0 or 1, and the 
particle velocity update equation remains unchanged. 

The update method of the particle position is as follows: 

( ) ( ),
,

1

1 e i j
i j v

s v
−

=
+

                      (11) 

Use the sigmoid function to map the velocity of the particles to the range [0, 
1], so the speed of the particle can be expressed as: 

( ) ( ),
,

1

0 otherwise
i j

i j

rand s v
x

 ≤= 


                   (12) 

2.3. BPSO-iForest 

The idea of the BPSO-iForest improved algorithm is: in the iTrees set T gener-
ated in the train set D, the BPSO algorithm is used to find the optimal subset T’ 
to meet the needs of reducing the number of base classifiers while improving the 
classification accuracy and execution efficiency. 

Two principles are generally followed in the selection of iTree: 1) Choose 
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the one with higher precision; 2) Choose the one with big difference. The 
high-precision base classifier is selected because iForest is an integrated classifier 
that uses base classifier voting. The low-precision iTree may mislead the final 
judgment. The choice of base classifiers with large differences may complement 
the different information obtained between the base classifiers to increase the 
generalization ability of iForest. 

This paper uses the cross-validation method to calculate the accuracy value of 
the current tree each time and takes the average accuracy value A, where the 
larger A represents the better the accuracy. Use Equation (8) and Equation (9) to 
calculate the difference between each iTree and the average difference between 
all iTrees [14]: 

,

2i j ij
i j

i j

n n n
Q

n n
+ −

=
+

                      (13) 

( ),
1

1
1

N

i i j
j

Q Q
N =

=
− ∑                       (14) 

In Equation (8), ni and nj represent the number of samples that are correctly 
tested in the sample space D of the tree Ti and Tj, respectively, and nij represents 
the number of samples that are correctly tested by Ti and Tj. 

According to reference [14], find a fitness function that can balance these two 
factors as shown in Equation (15): 

( ) 1F T
A Qµ λ

′ =
′+

                      (15) 

μ and λ and represent the weight of A and Q. 
The specific algorithm flow is as follows: 
Input: Train set D; Number of particles N; Number of iterations C; 
Step 1. Build iTrees-Initial quantity L; 
Step 2.Initialization: particle velocity, position, bestp  and bestg ; 
Step 3. Calculate particle A , Q′  and ( )F T ′ ; 
Step 4. Update particle swarm’s bestp  and bestg ; 
Step 5. Update ω ; 
Step 6. Update particle velocity and position; 
Step 7. If the extreme value of the particle swarm reaches the optimal solution 

or the number of iterations > C, the algorithm ends. Otherwise repeat step 2; 
Output: The optimal subset T’. 

3. Threshold Selection 

According to the principle of iForest, when the abnormal score s → 1, the sample 
is an abnormal point; s → 0, the sample is a normal point. The value of the ab-
normal score is within (0,1), and a threshold must be determined to divide the 
abnormal score into an abnormal interval or a normal interval. The distribution 
of abnormal scores for samples of different brands is different, so the specific 
value of the threshold cannot be fixed in the algorithm. Therefore, it is necessary 
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to design a method to calculate the threshold based on the result of the anomaly 
score. Combined with the idea of K-Means clustering, this article came up with a 
clustering method to calculate the center points center 0 and center 1 of the two 
types of abnormal scores. According to the distance between the abnormal score 
and the center points, it is divided into normal or abnormal. 

K-Means is a commonly used clustering algorithm based on Euclidean dis-
tance, the main purpose is to divide n sample points into k clusters, so that simi-
lar samples can be divided into the same cluster as much as possible. The K in 
the K-means algorithm represents data that needs to be divided into several cat-
egories, which are manually defined. All samples in this article are divided into 
abnormal and normal categories, only two center points need to be found, so the 
number of cluster centers is k = 2. The location of K-Means initialization cen-
troid has a great impact on the final clustering results and running time. If the 
initial centroid is not well chosen, it will fall into a local optimal solution, so it is 
necessary to choose a proper initial centroid position. Combined with the idea 
that the distance between the initial centroids of the K-Means++ improved algo-
rithm should be as large as possible [20] and the characteristics of low abnormal 
scores of normal points and high abnormal scores of abnormal points, the 
maximum and minimum anomaly scores are directly set as the initial class cen-
ter points, which can speed up the convergence of the algorithm. 

Algorithm steps: 
1) Select the minimum and maximum anomaly scores as the initial cluster 

centers center0 and center1; 
2) For each sample’s anomaly score scorei, calculate its distance to the two 

cluster centers, and assigns them to the clusters corresponding to the closer 
cluster centers; 

3) Recalculate the values of center0 and center1, and update the centroids of 
all samples belonging to the class. The update equation of the cluster centers is 
as shown in Equation (16); 

 1

ix ci

center x
c ∈

= ∑                       (16) 

4) The algorithm terminates when the function reaches the number of itera-
tions or the minimum error change. If the conditions are not met, steps 2 and 3 
are repeated. 

The specific algorithm flow is shown in Algorithm 1. 
In Algorithm 1, J center center′∆ = − , δ  is minimum error change, center 

0 is the center of the anomaly, center 1 is center of normal class. When classify-
ing the test set, first calculate samples’ anomaly scores. With the class centers 
center 0 and center 1, for a new unknown sample, divide it into closer classes. 

4. Experimental Results and Analysis 
4.1. Lab Environment 

In order to verify the accuracy of the algorithm’s division of abnormal data, this  
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Algorithm 1. ClassifyByCluster(scores, iters) 

Inputs: scores - anomaly scores, iters - number of iterations 

Output: anomaly class centers 

1. center0 = min(scores) 

2. center1 = max(scores) 

3. labels [scores.length] 

4. for n = 1 to iters 

5.       initialization cnt0,cnt1 

6. fori =1 to scores.length 

7.            diff0 = Math.abs(scores [i]-center0) 

8.            diff1 = Math.abs(scores [i]-center1) 

9.            diff0 < diff1? labels [i] = 0&cnt0++:labels [i]=1&cnt1++ 

10. end 

11. diffs = centers 

12. initialization centers 

13. update centers 

14. if ΔJ<δ 

15. break 

16.        end 

17. returncenter0,center1 

 
paper uses cigarette physics and chemistry inspection data to test the algorithm. 
Cigarette physical and chemical inspection data include: length mean and stan-
dard deviation, circle mean and standard deviation, mass mean and standard 
deviation, resistance to suction mean and standard deviation, hardness mean 
and standard deviation, ventilation rate mean and standard deviation, tar 
amount, carbon monoxide amount and nicotine amount, a total of 15 feature 
dimensions of detection data. Collected sample data of multiple brand specifica-
tions, among which the real sample data includes data of different years and dif-
ferent production batches. In order to ensure the general applicability of the al-
gorithm, the inspection data comes from different laboratories and randomly 
select the train set and the test set. 

4.2. Result Analysis 

Take brand 1 as an example, real cigarette samples are regarded as normal 
points, fake cigarette samples are regarded as abnormal points. The train set has 
a total of 229 samples, including 216 normal samples, 13 abnormal samples, the 
test set has a total of 58 samples, including 46 normal samples and 12 abnormal 
samples. Build iTrees with train set, get the test set data’s abnormal score on the 
iTrees, draw a scatter plot of abnormal scores, with orange for abnormal samples 
and blue for normal samples. Figure 2 is the experimental result of BPSO-iForest, 
Figure 3 is the experimental result of iForest. 

Calculate the two cluster centers by Algorithm 1, evaluate the correct rate of 
judgment according to the discrimination criteria. Count the distribution range 
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of abnormal scores of abnormal samples and normal samples. All analysis con-
clusions are shown in Table 1. 

It can be seen from the experimental results that, compared with iForest, 
BPSO-iForest has higher accuracy; the distribution range of abnormal scores 
becomes smaller, abnormal samples:0.29 → 0.09, normal samples:0.14 → 0.10. 

In actual work, the abnormal sample data of the train set is often missing or 
insufficient. In order to evaluate the accuracy of the algorithm when the train set 
lacks abnormal data, the selected train set lacks abnormal samples, only 174  

 

 
Figure 2. BPSO-iForest scatter plot. 

 

 
Figure 3. iForest scatter plot. 

 
Table 1. BPSO-iForest and iForest experimental results. 

Project BPSO-iForest iForest 

center 0 center 1 −0.12, 0.10 −0.15, 0.10 

Abnormal samples score range (−0.15, −0.06) (−0.30, −0.01) 

Normal samples score range (0.04, 0.14) (0.01, 0.15) 

Correct rate 100% 98.3% 
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normal samples, test set include 40 normal samples and 6 abnormal samples. 
Figure 4 is the experimental result. 

The two cluster centers calculated by Algorithm 2 are −0.06 and 0.15. Ac-
cording to the discrimination criteria, the accuracy of the judgment is 100%. The 
range of abnormal scores for real samples is (0.06, 0.23), larger than when there 
are abnormal samples in the train set. In the absence of train set’s abnormal 
samples, the distribution of abnormal scores is scattered, which is consistent 
with the calculation principle of isolation forest algorithm. In the case of missing 
abnormal data in the train set, the degree of difference of iTrees is reduced, re-
sulting in a larger range of scores. 

Comparison between normal samples at different production times. Try to 
compare the control of physical and chemical data between different batches by 
the abnormal scores. The train set include 87 normal samples produced in 2020, 
4 abnormal samples were added as a reference, and 20 normal samples produced 
in 2018. Figure 5 is the experimental result. 

 

 
Figure 4. Abnormal data missing from the training set scatter plot. 

 

 
Figure 5. Comparison of different batches scatter plot. 
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On the left are the 4 abnormal samples, the orange on the right are 2018 sam-
ples, and the blue are 2020 samples. The 2018 samples and 2020 samples have a 
high degree of overlap in the abnormal score distribution, which are all clearly 
distinguished from the abnormal samples. The above results show that there is 
no significant difference between the physical and chemical data produced in 
2018 and 2020, and the product quality stability is well controlled. 

In order to verify the accuracy of the algorithm on other brand products, this 
paper selected ten other brands for experimentation. All results are shown in 
Table 2. 

It can be seen from Table 2 that the method in this paper has generally better 
identification accuracy for different brand products. 

5. Conclusions 

In order to identify and detect fake or defective cigarettes through physical and 
chemical test data, this article uses BPSO-iForest algorithm to calculate the 
anomaly score of samples and K-Means algorithm to get the cluster center, fi-
nally determine whether the sample data is abnormal. 

This paper uses the BPSO-iForest algorithm to find the most significant subset 
T in iTrees, which meets the requirements of reducing the number of base clas-
sifiers and improving classification accuracy and execution efficiency. With the 
abnormal score obtained by the BPSO-iForest algorithm, we can use the 
K-Means algorithm to obtain the cluster centers of the normal data and the ab-
normal data as discrimination threshold, and judge the abnormal state by the 
distance between the sample score and the cluster centers. Experiments were 
carried out on multiple brands’ cigarette products test data. The experimental 
results show that the method in this paper can effectively identify genuine and 
fake cigarette samples. At the same time, taking the Brand 1 specification as an 
example, the BPSO-iForest and iForest algorithms are compared. The improved 
BPSO-iForest algorithm can improve the accuracy of the algorithm, reduce the  

 
Table 2. 10 brands experimental results. R for real, F for fake. 

Brand number Train set R/F Test set R/F Correct rate R/F 

1 737/54 150/12 100%/100% 

2 225/25 108/31 100%/100% 

3 143/15 72/10 100%/100% 

4 380/31 73/8 100%/100% 

5 86/10 44/25 100%/96% 

6 144/13 65/7 100%/100% 

7 108/10 43/31 100%/100% 

8 82/10 44/14 100%/100% 

9 272/29 68/8 100%/100% 

10 547/30 104/10 100%/100% 
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interference of redundant features on abnormal scores, and improve the time ef-
ficiency of the algorithm. The lack of abnormal data in the train set is also ana-
lyzed, and the test results show that the improved BPSO-iForest algorithm can 
still effectively identify abnormal data. 

Although the algorithm has achieved the expected results, there are still defi-
ciencies in data mining. The contribution rate of each feature dimension to the 
detection result is a promising research direction, and we will continue to ex-
plore the meaning behind the test data. 
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