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In this paper, we prove the existence of at least one solution for Volterra- Hammerstein integral 

equation (V-HIE) of the second kind, under certain conditions, in the space ( ) [0, ], 1pL C T T    , Ω is the 

domain of integration and T is the time. The kernel of Hammerstein integral term has a singularity, while 
the kernel of Volterra is continuous in time. Using a quadratic numerical method with respect to time, 
we have a system of Hammerstein integral equations (SHIEs) in position. The existence of at least one 
solution for the SHIEs is considered and discussed. Moreover, using Toeplitz matrix method (TMM), the 
SHIEs are transformed into a nonlinear algebraic system (NAS). Many theorems related to the existence 
of at least one solution for this system are proved. Finally, numerical results and the estimate error of it 
are calculated and computed using Mable 12. 
 
Key words: Volterra- Hammerstein integral equation, nonlinear algebraic system (NAS), singular kernel, 
Toeplitz matrix method, Hölder inequality. 

 
 
INTRODUCTION 
 
Linear and nonlinear singular integral equations have 
received considerable interest the mathematical appli-
cations in different areas of sciences. The different 
numerical methods play an important role in solving the 
nonlinear integral equations (NIE). Kummer and Sloan 
(2003) used a new collection type method to discuss the 
solution of HIE with continuous kernel. Kummer (1988) 
used a discrete collection-type method to discuss the 
solution of HIE with continuous kernel. Hacia (1993) used 

projection-iteration methods, and an approximate method 
to discuss the solution of HIE with continuous kernel. 
Moreover, the super convergence of some numerical 
methods for HIE with continuous kernels is observed and 
developed through the work of many authors (Zhang, 
2008; Diago and Lima, 2008; Kaneko and Xu, 1996). 
When the kernel of HIE has a singular term, new different 
numerical methods were used (Lardy, 1981; Abdou et al., 
2005;   Abdou   et   al.,   2009;   Vainikko,    2011).   More  
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information for solving the NIE using different methods 
can be found in the work of Abdou (2003), Abdou and Al-
Bigamy (2013a), Bazm and Babolian (2012) and Abdou 
et al. (2013b). 

Consider a general formula of V-HIE of the second kind 
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                                                                                       (1) 
 

in the space ( ) [0, ]; 1,PL C T T    where , ,f k F and 

 are known functions. ( )k x y is a discontinuous 

kernel of HI term in position. While, ( , )F t  is a 

continuous kernel of VI term in time. The constant  

defines the kind of IE; while λ has a physical meaning 
and is the domain of integration with respect to 
position. 
To discuss the existence of at least one solution of 
Equation (1) in ( ) [0, ], 1, 1PL C T p T    , we write IE (1) in 

the integral operator form 
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Then, Let S be the set of functions   in  ( ) 0,pL C T   

for which  ,  is a constant, and assume the 

following necessary conditions: 
 

i) The kernel of position ( ),k x y for a constant ,c  

satisfies: 
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ii) The kernel of time  ( , ) 0,F t C T    satisfies  

( , ) ,F t M    M is a constant. 

iii) The given function ( , )f x t  with its partial derivatives 

with respect to position x and time t  are continuous in 

the space ( ) [0, ]pL C T   and its norm is defined as: 
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iv) The known continuous function  , , ( , )t x x t  , for 

the constants 1Q P  and 1Q Q
, 

satisfies the following 

conditions 
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, (E is 

a constant). 
 

(b)     
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BASIC THEOREMS AND DEFINITIONS 
 
We state the famous theorems used in proving the 
principal theorem as follows: 
 
 
Theorem 1 (without proof) 
 
Let S  be a closed and convex set in a Hilbert space, and 

K  is a continuous mapping of S into itself. Suppose that 

the set S  is compact, and then K  has at least one fixed 

point in S (Abdou et al., 2005). 
 
 
Theorem 2 (Modified Schauder fixed point; (without 
proof)) 
 
Let S be a closed set, convex set, in a Hilbert space, and 

K  is a continuous mapping of S into itself. Suppose that   

( )K S  is compact, then K   has at least one fixed point 

inS   (Abdou et al., 2011). 

In the remainder part of this paper, the existence of at 
least one solution for V-HIE (1), under the necessary 

conditions, in the space ( ) [0, ], 1, 1,PL C T p T   
 

will be 

proved. In addition, using a quadratic numerical method 
with respect to time, we obtain SHIEs, where the 
existence of at least one solution of the system can be 
proved.  

Moreover, using TMM, we represent the SHIEs in the 
form of NAS. Many different theorems are derived to 
prove the existence of at least one solution of the NAS. 
Finally, some examples, when the kernel of position 
takes a logarithmic form, Carleman function and Cauchy 
kernel are calculated numerically and the error estimate, 
in each case, is computed. 



 
 
 
 
The principal theorem of at least one solution 
 
Here, we state several lemmas that lead to prove the 
following principal theorem: 
 
 
Principal Theorem 3 
 
Under the conditions (i)-(iv), V-HIE (1) has at least one 
solution. To prove the principal theorem, we state and 
prove the following lemmas: 
 
Lemma 1 (without proof): In the complete 

space ( ) [0, ]pL C T  , if we choose any functions 

1 2( , ), ( , )x t x t   in the set ,pS  then S 
 is closed.  

Moreover, if  n  is a sequence in S 
 having a limit , 

then S   is a convex set in the space 

( ) [0, ].pL C T  ◘(Abdou, 2003). 

 
Lemma 2: Under the conditions (i- iii) the integral 

operator W  of Equation (2) maps the set S
 into itself. 

 
Proof: In the light of Equations (2) and (3), we get 
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Applying Cauchy-Schwarz inequality to Hammerstein 
integral term, and then using the conditions (i-iii), the 
above inequality can be adapted in the form 
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The above inequality shows that, the operator W  maps 

the set  S   into itself. 

 

Lemma 3: Under the conditions (i-ii), the operator W  is 

continuous inS
. 

  

Proof: For the two functions )t,x(1 and )t,x(2  in S , 

after applying Cauchy-Schwarz inequality to 
Hammerstein integral term, then using the conditions (i) 
and (ii), we get 
 

.ddy)),y(,y,()),y(,y,(maxTcM)t,x(W)t,x(W
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If )()t,x()t,x( 21  ,   then   in   the    light   of  
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condition (iv) the above inequality reduces to 

1 2( , ) ( , ) , ( 1).W x t W x t M cT where M cT
 

   
 

   

 

This implies the continuity of  W   in the set S    . 

 

Lemma 4: Let ( )nk x y
 

and ( , )nF t   be two 

sequences of continuous functions satisfy the conditions 
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Then, after neglecting very small constants, and for 

positive integer
0n , we have 
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Now, in view of Lemma 4, we define the sequence of 

operator  nW  as: 

 

0
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t
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Lemma 5: The integral operator (8) maps the set S
 

continuously into itself. Moreover, the integral operator 
(8) is continuous. 
The proof of Lemma (5) can be obtained directly after 
using Lemmas (2) and (3). 
 
Lemma 6: Under the same conditions (i-iv) and Lemma 

4, the set ( )W S  
 of Equation (8) is compact. 

 
Proof:  From Equations (2) and (8) we get 
 

0
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After using Lemma 4 and conditions (i-iv), and then 
applying Hölder inequality to HI term, the above inequality 
yields 
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Hence,  ( , ) ( , ),nW x t W x t   for all ( , )x t in .S
 Let 

 ( , )n x t  be any sequence inS
. We obtain the 

sequence  ( , )
nn x t  which is subsequence of every 

jn  

except for finite number of elements and clearly 

 nj nW  converges for every j . Therefore, 

.
n m n n n m m mn m n j n j n j m j m mW W W W W W W W             

 

Since 0
n mj n j mW W    as , .n nm n   Then from 

(11) for large j , we get the Cauchy sequence   

02 , ( , ( )).
n mn m m nW W m n n      

 
so that ( )W S

 is 

compact. 
 

After the above discussion, the principle theorem is 
proved: 
 
 

SYSTEM OF HAMMERSTEIN INTEGRAL EQUATIONS 
 

Here, quadratic numerical method is used, in Equation 
(1) to obtain SHIEs in position. For this aim, we divide the 

interval  0,T  as 0 10 ... ...k Nt t t t T        

where , 0,1,2..., .kt t k N   Hence, the integral term 

of Equation (1) becomes 
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Where,
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1
max , , , ( 0, ).
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j j j j k k j j

j k
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The values of 
ju  and ;p p k  are depending on the 

number of derivatives of ( , )F t   with respect to time, see 

Atkinson (2011). 

Using (10) in (1), and neglecting  1p

kO  , we have 
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Where, we used the following notations 
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                                                                                     (12) 
 

The formula (11) represents SHIEs and its solution 

depends on the  given  function ( )kf x ,  the  kind  of  the  

 
 
 
 

kernel ( )k x y , and the degree of the known 

function  , ( )j jx x  . The formula (11) can be written 

in the integral operator form 
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Following the same way of Lemmas 2, 3 and 6 of the 
principal theorem 3, we can directly proof the following 
lemmas and principal theorem of SHIEs. 
  
Lemma 7 (without proof): Under the conditions (i) – (iv-

a), the operator V  maps the space ( )pL   into itself.  

 
Lemma 8 (without proof): Under that, the conditions (i), 
(ii) and (iv-b)  V  is a compact operator in the space 

( )pL  . 

 
  
Principal Theorem 4 of SHIEs: 
 
According to Lemmas 7 and 8, the SHIEs of the second 
kind (11) have at least one solution. 
 
 
THE TOEPLITZ MATRIX METHOD 
 
Here, we will discuss the solution of Equation (1) numerically, using 

TMM in one dimensional, and [ , ]b b  . For this, write the 

integral term Equation (11) in the form (Abdou et al., 2011) 
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where, 
( ) ( )j

nA x  and ( ) ( )j

nB x
 
for all 0 j i  are arbitrary functions to 

be determined, and R  is the estimate error max j

j
R R . 

In the light of TMM (Abdou et al., 2011), the integral formula (11) 
yields 
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Putting x mh  in (15), and using the following notations 

( ) ( )( ) , ( ) ,i i

i i n mnh D mh D     

( ) , ( , , ( )) ( ),i im j j jn jnf mh f nh nh        we get the 

following NAS 
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( ) , .
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                                                                                                     (18)             
 

The error term 
( )jR  for each value of j , is determined from the 

following formula 
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The existence of at least one solution of the NAS 
 
The existence of at least one solution of the NAS (18) in the 

space


, will be proved according to Schauder fixed point 
theorem. For this, we write it in the operator form: 
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i N
j
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Let   be the set of the two families { }n 
 
and { }n   in 


 for which 

1 2,      , 
1 2,   are constants, and 

then consider the following conditions: 
 

( )

0

sup , supsup ,
i N

j

m ij mn
m i N j n N

f H F D E
 

    (E, 

H are constants).                                                                       (21) 
 

For the known set ( , ( ))nh nh  , we have 
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n
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    (23) 
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Now we state and prove some lemmas that lead directly to the 
principal theorem of NAS. 
 

Lemma 9: Under the conditions (21)-(22), the operator T  of 

Equation (20) maps the set   into itself.  

Proof: In view of the formulas (20) and (21), we deduce 
 

1 1sup , ( ).m
n

H
T QE


   

 
   

                 (24) 

 

The above inequality proves that, the operator T  maps the set   
into itself. In addition, the inequality (24) define the boundedness of 

the operator T  andT .  
 

Lemma 10: Under the conditions (21) and (23), T  is continuous in 

the set . 
 

Proof:  For the two functions   ,   in the set , the operator 
(20), in view of Equations (21) and (23), yields 
 

1sup , .m m
m

T T QE QE


     


     

 
The above inequality holds for every integer m under the 

condition .QE   

Hence,  T T 


    if ( ).    This 

proves the continuity of the operator T  in the set .◘  
 

Lemma 11: Let  ( , ( ))k nh nh   be a sequence of elements, 

such that 
 

lim sup ( , ( )) ( , ( )) 0.k
k n

nh nh nh nh   


              (25) 

 

Then, there exists a positive integer 
0k , such that 

 

2 0sup ( , ( )) , ( );k
n

nh nh Q k k            (26) 

 

0sup ( , ( )) ( , ( )) , ; ( 1).k k
n

nh nh nh nh k k            (27) 

 

Proof: For any positive integer k , and for any two 

sequences ( , ( )), ( , ( ))k nh nh nh nh    , we see that 

 

sup ( , ( )) sup ( , ( )) ( , ( )) sup ( , ( )) ,k k
n n n

nh nh nh nh nh nh nh nh                                                                                                                

                                                                                                     (28) 
 

and 
 

sup ( , ( )) ( , ( )) sup ( , ( )) ( , ( ))k k k
n n
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sup ( , ( )) ( , ( )) sup ( , ( )) ( , ( )) .k
n n

nh nh nh nh nh nh nh nh              (29) 
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In the light of condition (25), there exists a positive integer
0k , such 

that: 
    

2 0 2sup ( , ( )) ( , ( )) , ; 1.k
n

nh nh nh nh k k             

                                                                                                    (30) 

 
Hence, with the aid of (25) and using (30), the inequality (27), after 
concluding the arbitrary small constant leads directly to (28). In 
addition, in view of (30) the inequality (29), leads to the same 
inequality (28). Hence, the lemma is proved◘ 

 
Lemma 12: Under the conditions (26)- (27) of lemma 11 the 
sequence of operators 
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0

1
( , ( ))

i N
j

k m ij mn k j m

j n N

T F D nh nh f


  
  

     ,

         
                                                                                                     (31) 

 

for each 
0k k

 , 
maps the set   continuously into itself. 

 

Lemma 13: Under the same conditions of lemma 12, the set ( )T   

is compact. 
 
Proof:  From the formula (31), we have 

 

( )

0

sup ( , ( )) ( , ( ))
i N

j

k m k m ij mn k
nj n N

T T F D nh nh nh nh


     
  

     

 
Hence, with the aid of (26) and (27), there exists a positive integer 

0k , such that 

 

2 0,k kT T QE k k


 



     

  , QE      (32) 

 

Inequality (32) shows that, 
kT T   uniformly for any  . 

Let { }nY  be any sequence in  , then we can select a 

subsequence 
1

{ }nY  such that 
11{ }nT Y  converges. From that 

subsequence, we can extract a new subsequence 
2

{ }nY  such that 

22{ }nT Y  converges, and so on. Thus, we obtain a chain of 

subsequences. Finally, we take { }
nnY  which is a subsequence of 

every { }
jnY  except for a finite number of elements and clearly 

{ }
nj nT Y  converges for every j . Therefore, we have 

 

.
n m n n n m m mn m n j n j n j m j m mT Y T Y T Y T Y T Y T Y T Y T Y

   
        

 

Since 0
n mj n j mT Y T Y


   as ,m nm n  , then 

for large j , we obtain from (32), that 

 

02 , , .
n mn m m nT Y T Y m n k


                    (33) 

Hence, the sequence { }
nnT Y  is a Cauchy sequence, so that 

( )T   is compact. 

The previous Lemmas 9-13 show that, T  is a continuous 

operator maps the set , which is evidently closed and convex set 

into itself, and ( )T   is a compact set. Therefore, we can state the 

following by theorem: 

 
 
Principal Theorem 5 of the NAS 
 

The NAS (18) has at least one solution in the set   under the 

condition  .QE   Now, it is suitable to consider the 

following theorem which proves the convergence of one sequence 
of approximate solutions to some solution of Equation (18) in the 

space .
 

 
Theorem 6: If the conditions (19) and (20) are verified, and the 

sequence of functions { } {( ) }j m jL f  converges uniformly to 

the function { }mL f  in the space


. Then, we have at least 

one sequence of the approximate solutions { } {( ) }j m j   

converges uniformly to some solution { }m   of Equation 

(18) in the space .
 

 
Proof: By virtue of the formula (31), we get 

 

( )

0

1
( ) sup ( , ( )) ( , ( )) sup ( )

i N
j

m m j ij mn j m m j
n mj n N

F D nh nh nh nh f f


     
  

       

 
The above inequality, after using the two conditions (30) and (31), 
holds for each integer m , hence 2 1

1 1
j j jE L L L L


 

  
  

      
,  
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Table 1. Principal example: logarithmic kernel ( ) lnk x y x y   . 

 

 1   Table (1) 3
 

 

t
 

  T  E  T  E  

0.01t   

-0.0001000 -0.0000999664 0.33638E-7
 

-0.00009996 0.388998E-7
 

-0.0000076 -0.0000007656 0.10442E-7
 

-0.00000076 0.108296E-7
 

-0.0000300 -0.0000002994 0.53644E-7
 

-0.00000029 0.53917E-7
 

-0.667x10
-7 

-0.66520x10
-7 

0.14632E-7
 

-0.6654x10
-7 

0.123618E-7
 

      

0.1t   

-0.0100000 -0.0100178442 0.178444E-6 -0.01001732 0.17316E-6 

-0.0000766 -0.0000767245 0.57837E-5
 

-0.00000767 0.539567E-5
 

-0.0000533 -0.0000533599 0.26569E-5
 

-0.00005335 0.243165E-5
 

-0.0030000 -0.0030009798 0.97978E-6
 

-0.00300095 0.952434E-6
 

      

0.4t   

-0.1600000 -0.1600055961 0.26055E-5 -0.00001625 0.259703E-5 

-0.1226000 -0.1226053478 0.18676E-5 -0.12452798 0.186131E-5 

-0.0480000 -0.0487097037 0.70970E-5 -0.04870926 0.709258E-5 

-0.0106667 -0.0108199579 0.15329E-5 -0.01082365 0.156982E-5 
      

0.8t   

-0.6400000 -0.6400771753 0.34377E-4 -0.64007095 0.343709E-4 

-0.4906667 -0.49065164647 0.257795E-4 -0.51646029 0.257936E-4 

-0.1920000 -0.2020090715 0.100090E-4 -0.20201104 0.100110E-4 

-0.0426667 -0.0448816191 0.221495E-4 -0.04488829 0.222162E-4 
 

In Table 1 the linear ( 1 ) and nonlinear ( 3 ) mixed integral Equation (34) with logarithmic kernel are 

solved numerically, in different times, using TMM. The error, in each case, is computed. We see that as t increases 
the error increases. Also, the error, using Maple 12, in the linear case is less than the error in the nonlinear case.

  
 
 

(where E  ) 

Since as j  , so that 0j 
  , 0jL L


  ,  

 
 

NUMERICAL EXAMPLES AND DISCUSSION 
 

For the integral equation 
 

1

2 2

0 1

( , ) ( , ) 0.001 ( ) ( , ) ; ( ( , ) )

t

x t f x t k x y y dyd x t x t     


    
  

           

                                                                                  (34) 
 

We consider, in general, the nonlinear integral equation 
in time and position, for  1  and the linear term for   

1.  We consider the continuous function of time 
2( , )F t t  ,  [ 0 , ] , 1 .t T T   While the exact solution 
2( , )x t x t  . Using the exact solution the free term 

( , )f x t is determined after assuming the kernel of position. 

The kernel of position is considered in three cases 
 

Case 1: Logarithmic kernel ( ) lnk x y x y    

 

Case 2: Carleman function 

( ) ,0 1,k x y x y





      

 

Case 3: Cauchy kernel 1
( ) .

( )
k x y

x y
 



   

1) Here, we consider a general formula of mixed integral 
equation in position and time with discontinuous kernel in 
position and continuous kernel in time. 
2) Using quadratic method we have a system of 
Hammerstein integral equations with singular kernel. The 
first approximate of the system is discussed in Abdou et 
al. (2011) using Banach fixed point theorem. 
3) We consider the first table for the linear and nonlinear 

case 1, 3   respectively, when the kernel in the 

logarithmic form ( ) ln .k x y x y    The results are 

computing, using Maple 12 at, 0.01, 0.1, 0.4t   and

 0.8t  and 30N   (Table 1). 

4) In the second example, we consider the Carleman 

kernel ( )k x y x y


    and computing the results 

when 0.01, 0.22  and 0.32 , where   is called 

Poisson's coefficient,

 

0 1, 30N    and t=0.1 (Table 

2). The importance of Carleman kernel comes from the 
work of Arytiunian (1959) that has shown that the plane 
contact problem in the nonlinear theory of plasticity, in its 
first approximation can be reduced to Fredholm integral 
equation of the first kind with Carleman kernel. 
5) The third case when the kernel takes the Cauchy 

kernel 1
( ) .

( )
k x y

x y
 


 The results are computing, at, 

0.01, 0.1, 0.4t   and 0.8t  and 30N  , (Table 3).  
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Table 2. Principal example: Carleman function ( ) ,0 1,k x y x y





      

 

 1  Table (2)  3
 

 

, 0.1t 
 

  T  E  T  E  

0.01   

-0.0400000 -0.0405059859 0.50599E-6 -0.04050583 0.50582E-6 

-0.0280000 -0.0283545606 0.35456E-6 -0.02835440 0.35440E-6 

-0.0160000 -0.0162027164 0.20271E=6 -0.01620256 0.20255E-6 

-0.0040000 -0.0040508069 0.25080E-6 -0.00405064 0.50644E-6 
      

0.22   

-0.0400000 -0.0405133101 0.51333E-5 -0.04051315 0.51315E-5 

-0.0280000 -0.0283683819 0.36838E-5 -0.02836822 0.36821E-5 

-0.0160000 -0.0162115962 0.21159E-5 -0.01621141 0.21141E-5 

-0.0040000 -0.0040531760 0.53176E-5 -0.00405296 0.52953E-5 
      

0.32   

-0.0400000 -0.0405186594 0.51865E-4 -0.40051851 0.18505E-4 

-0.0280000 -0.0283781604 0.37816E-5 -0.02837799 0.37799E-5 

-0.0160000 -0.0162177413 0.21774E-5 -0.0162176 0.21754E-5 

-0.0040000 -0.0040547969 0.54797E-5 -0.00405454 0.54538E-5 
 

In Table 2 the linear and nonlinear mixed integral Equation (34) with Carleman function are solved numerically, in different 

times, using TMM. The error, in each case, is computed. As  increases the error are increases. In addition as the time 

increases, the error increases 
 
 
 

Table 3. Principal example: Cauchy kernel 1
( ) .

( )
k x y

x y
 



 

 

 1  Table (3)  3
 

 

t
 

  T  E  T  E  

0.01t   

0.00000000 0.0000000000 0.00000000 0.000000000 0.00000000 

0.00000068 0.00000083683 0.14853E-7 0.000698754 0.10421E-7
 

0.00206500 0.0027655451 0.70054E-7 0.002555558 0.49055E-7 

0.00275333 0.0028636356 0.10302E-7 0.002855432 0.10209E-7 
      

0.1t   

0.00000000 0.0000000000 0.00000000 0.000000000 0.000000000 

0.06883333 0.0683543415 0.47899E-6 0.069363543 0.53021E-6 

0.27533333 0.2763424344 0.10091E-6 0.275444323 0.11099E-6 

0.34416667 0.3472882822 0.31216E-6 0.341559088 0.26075E-6 
      

0.4t   

0.00000000 0.0000000000 0.00000000 0.000000000 0.00000000 

1.10133333 1.1123232342 0.9898E-5 1.122236658 0.20903E-5 

3.3040000 3.3549837939 0.50983E-5 3.325444459 0.21444E-5 

4.40533333 4.4827726380 0.77439E-5 4.435666577 0.30333E-5 
      

0.8t   

0.00000000 0.0000000000 0.000000000 0.000000000 0.0000000000 

4.40533333 4.4053627627 0.26732E-4 4.405342618 0.17009E-4 

13.2160000 13.216019170 0.19170E-4 13.21662789 0.24662E-4 

17.6213333 17.621191892 0.19785E-4 17.62176526 0.19631E-4 
 

In Table 3, the mixed integral equation in linear and nonlinear case (34) with Cauchy are solved numerically in different 
times, using TMM. The error increases with increase in the time and further increases the linearity of the equation. 

 
 
 

The importance of the above kernel is found in the work 
of Abdou and Salama (2004). 
6) The Toeplitz matrix method  is  considered  one  of the  

best methods for solving the singular integral equations 
with discontinuous kernel, where the singular part 
disappears  and the solution is obtained directly. 



 
 
 
 
7) From Tables (1) - (3), we note that as N increases the 

error decreases while at t  increases the error increases. 

8) As   increase, 
 
0 1/ 2   the error increases, for 

1/ 2  , we have the potential kernel; see  Abdou  

(2002). For1/ 2 1  , we have the generalized potential 

function (Abdou et al., 2013b) 
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