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Abstract

A set-theoretical generalization of Tychonoff’s theorem on compactness of the product of compact
topological spaces is proved.
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1 Introduction

The original proof of Tychonoff’s product theorem relies on the Kuratowski – Zorn lemma, i. e, on
the axiom of choice. Later it was shown (see [1] and the references therein) that this axiom can be
eliminated from the proof (but not from the assertion). In [1], the notion of (pointless) topological
space was generalized to this end. In the present article, we generalize it yet more (joins are not
mentioned at all) and prove in this generality an elementary set-theoretical compactness theorem
having no prototypes in the literature. As a topological application of this main result, we give a
choice-free proof of the classical Tychonoff theorem.
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2 Preliminaries

A subset of all nonempty finite subsets of a set I will be denoted by (2I)0. The least element,
provided it exists, of an ordered set will be denoted by 0, maybe with a subscript. The symbols inf
and ∧ are equipollent.

We will say that, by definition,

• an ordered set is bottomed if it contains the exact lower bound of every its subset;

• a subset (below referred to as a system) {xi, i ∈ I} of a bottomed lattice is centered if for
any J ∈ (2I)0

∧
i∈J

xi ̸= 0;

• a unary operation f in an ordered setX is: inductive (idempotent) if for any x ∈ X x ≺ f(x)
(f(f(x)) = f(x), respectively), a hypoclosing if it is both inductive and idempotent;

• the element f(x), where f is a hypoclosing, is a hypoclosure of x;

• an element coinciding with its hypoclosure is hypoclosed ;

• an equipped with a inductive idempotent operation bottomed set is a hypotopological space;

• an element x of a hypotopological space is hypocompact if for any centered system Z of
hypoclosed elements of this space ∧

z∈Z

x ∧ z ̸= 0; (2.1)

• a set H of hypoclosed elements in a hypotopological space X is a hypobase of this space if
for any x ∈ X there exists Hx ⊂ H such that x =

∧
y∈Hx

y.

Lemma 2.1. Let U be a bottomed set, V be its bottomed subset, and f be the operation in U defined
by f(u) = inf{v ∈ V : u ≺ v}. Then f is idempotent.

Proof. Obviously, f(u) ≺ f(f(u)). For x ≺ f(f(u)) and w ∈ V , the obvious implication f(u) ≺
w ⇒ x ≺ w shows that x ≺ f(u). Thus f(f(u)) ≺ f(u).

Proposition 2.1. In order that an element x of a hypotopological space X be hypocompact it is
necessary and sufficient that there exist a hypobase F in X such that for any centered system Z ⊂ F
relation (2.1) holds.

Proof. Ne c e s s i t y follows from the obvious fact that every hypotopology is its own hypobase.

S u f f i c i e n c y . Let F be a hypobase. Then for any hypoclosed element y there exists Zy ⊂ F such
that y =

∧
z∈Zy

z. Let y range over some centered system Y . On the strength of the last equality

y ≺ z as z ∈ Zy, so the system Z ≡
∪

y∈Y

Zy is also centered. So if for x and F are as in the assertion,

then relation (2.1) holds. Its left-hand side is none other than
∧

y∈Y

x ∧ y.

Let X be a bottomed set, Θ be a nonempty set; for each θ ∈ Θ, Xθ be a hypotopological space
with hypoclosing · (denoted likewise for all θ), and pθ : X → Xθ be an operator with the property

(∀ θ ∈ Θ pθy = pθz) ⇒ y = z (2.2)

(i. e., the family {pθ, θ ∈ Θ} separates points of X).

Denote
X∗ = {x ∈ X : ∃ y ∈ X ∀ θ ∈ Θ pθy = pθx}
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(̸= ∅ since 0 ∈ X∗). If for some x pθy = pθx for all θ (the element y with this property is unique
due to (2.2)), then we put by definition [x]∗ = y. Otherwise speaking, for x ∈ X∗ the element [x]∗
is uniquely determined by the formula

pθ[x]∗ = pθx, θ ∈ Θ.

Denote further

H = {x ∈ X∗ : [x]∗ = x}, X =

{∧
y∈S

y, S ⊂ H

}
and define the operation [·] on X by

[x] = inf{z ∈ X : x ≺ z} ≡
∧

x≺z∈X

z. (2.3)

Obviously, the set X is bottomed.

Lemma 2.2. The operation [·] is a hypoclosing.

Proof. Inductiveness is immediate from (2.3), idempotence – from (2.3) and
Lemma 2.1.

3 The Main Result

In this section, we use the Gothic font for the last three letters of the alphabet and for H. So

X∗ = {x ∈ X : ∃ y ∈ X ∀ θ ∈ Θ pθy = pθx} ,

H = {x ∈ X : [x]∗ = x}, X =

{∧
x∈S

x, S ⊂ H

}
;

for x ∈ X∗, the element (whose uniqueness will emerge from (3.1)) [x]∗ is defined by the formula

pθ[x]∗ = pθx, θ ∈ Θ;

the operation [·] is defined by

[x] = inf{z ∈ X : x ≺ z} ≡ inf{z ∈ H : x ≺ z}.

Theorem 3.1. Let the following objects be given: a nonempty set Θ and a bottomed set X; for each
θ ∈ Θ – a hypotopological space Xθ with a hypoclosing · (denoted likewise for all θ) and an operator
pθ : X → Xθ; a set Z ⊂ X such that for any θ ∈ Θ pθZ is a hypobase in Xθ. Assume that the
family {pθ, θ ∈ Θ} has the properties:

(∀ θ ∈ Θ pθy = pθz) ⇒ y = z, (3.1)

for any system {yi, i ∈ I} ⊂ X there holds(
∀ θ ∈ Θ

∧
i∈I

pθyi ̸= 0θ

)
⇒

∧
i∈I

yi ̸= 0. (3.2)

Then: (i) The operation [·] is a hypoclosing. (ii) If x is an element of X such that for each θ ∈ Θ pθx
is hypocompact, then x is itself hypocompact.
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Note prior to the proof that property (3.1) provides correctness of the definition of [·]∗ ([x]∗ is unique
for any x ∈ X∗).

Proof. The first statement is the replica of Lemma 2.2, so we prove the second. Fix θ. By condition
the element pθx is hypocompact. Let Z be a centered subsystem of Z. Then so is the system pθZ
(since, for any mapping, the intersection of the images of arbitrary sets contains the image of their
intersection), whence by the definition of hypocompactness∧

z∈Z

pθx ∧ pθz ̸= 0θ,

which together with (3.2) and arbitrariness of θ yields∧
z∈Z

x ∧ z ̸= 0.

It remains to refer to Proposition 2.1.

Note that the proof of the theorem does not rely on the axiom of choice.

4 Tychonoff’s Theorem as a Consequence of
Theorem 3.1

Let T be an infinite set, and {Xt, t ∈ T} be a family of nonempty sets. A point of the Cartesian
product

∏
t∈T

Xt will be denoted by x(·). It is a mapping of T into
∪
t∈T

Xt such that for each

t ∈ T x(t) ∈ Xt. Take
(
2T
)
0
as Θ, the Boolean of

∏
t∈T

Xt as X, the Boolean of
∏
t∈θ

Xt as Xθ. The

sets X and Xθ, θ ∈ Θ, are ordered with ⊂ as ≺. Under the above choice of X, its elements denoted
in Section 3 by the lowercase Gothic letters turn out to be subsets of

∏
t∈T

Xt, so we use for them

the customary symbols A,B etc. Define, for each θ ∈ Θ and A ⊂ X, pθA by

pθA = {x(·)|θ, x(·) ∈ A} ,

so that Xθ = pθX. Condition (3.1) takes the form(
∀ θ ∈

(
2T
)
0

{x(·)|θ, x(·) ∈ A} = {x(·)|θ, x(·) ∈ B}
)

⇒ A = B.

Let us prove even the stronger relation(
∀ θ ∈

(
2T
)
0

{x(·)|θ, x(·) ∈ A} ⊂ {x(·)|θ, x(·) ∈ B}
)

⇒ A ⊂ B.

If the antecedent is true, then one can write the obvious implications

x(·) /∈ B ⇒ ∃ s ∈ T x(s) /∈ p{s}B ⇒ ∃ θ ∈
(
2T
)
0
x(·)|θ /∈ pθA ⇒ x(·) /∈ A.

Condition (3.2) takes the form(
∀ θ ∈

(
2T
)
0

∩
i∈I

pθBi ̸= ∅

)
⇒

∩
i∈I

Bi ̸= ∅.
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Here is the proof of this relation. Let us take, for each s ∈ T , a point xs ∈
∩
i∈I

p{s}Bi and define x(·)

by x(s) = xs. By construction x(·)|{s} = xs, so for all s ∈ T x(·)|{s} ∈ p{s}Bi, i ∈ I, and therefore
x(·) ∈ Bi, i ∈ I.

From this time on, theXt’s are topological spaces, and · is the topological closing in every
∏
t∈θ

Xt, θ ∈

Θ, as well as in their Tychonoff’s product. For E ∈ Xt, Ec and Ct(E) signify Xt \ E and{
x(·) ∈

∏
t∈T

Xt : x(t) ∈ E

}
, respectively. For a subset E either of Xt or of

∏
t∈T

Xt, E◦ means the

interior of E.

Lemma 4.1. Let, for each t ∈ T, Ft be a closed set in a topological space Xt. Then
∏
t∈T

Ft is a

closed set in
∏
t∈T

Xt equipped with Tychonoff’s topology.

Proof.
∏

Xt \
∏

Ft =
∪

Ct(F
c
t ).

The next statement is obvious.

Lemma 4.2. For any t ∈ T and Bt ∈ Xt the set Ct(Bt) is open iff so is Bt.

Corollary 4.3. For any t ∈ T and Bt ∈ Xt (Ct(Bt))
◦ ⊂ Ct(B

◦
t ).

Proof. The left-hand side is the union of all open subsets of Ct(Bt), and the collection of the latter
is, by Lemma 4.2, exhausted by sets of the kind Ct(Gt), where Gt is an open subset of Bt.

Lemma 4.4. Let, for each t ∈ T, At be a set in a topological space Xt. Then
∏
t∈T

At =
∏
t∈T

At.

Proof. Denote Q =
∏
t∈T

At, R =
∏
t∈T

At. In this proof, the superscript c will be written after the

symbols of subsets of
∏

Xt, as well, and will signify the complement to
∏

Xt. One has Q ⊂ R since
Q ⊂ R and R is closed by Lemma 4.1. On the other hand, Rc =

∪
Ct

(
A

c
t

)
=
∪

Ct(A
c◦
t ),

Q
c
= Qc◦ = (Ct(A

c
t))

◦ ⊃
∪

(Ct(A
c
t))

◦.

It remains to apply Corollary 4.3 to Bt = Ac
t .

Denote

X∗ =

{
m∪

k=1

∏
t∈T

Dkt : m ∈ N, Dkt ⊂ Xt

}
.

Obviously,

pθ

m∪
k=1

∏
t∈T

Dkt =

m∪
k=1

∏
t∈θ

Dkt.

Hence we get by Lemma 4.4

pθ

m∪
k=1

∏
t∈T

Dkt =
m∪

k=1

∏
t∈θ

Dkt ≡ pθ

m∪
k=1

∏
t∈T

Dkt.

So, for

x =

m∪
k=1

∏
t∈T

Dkt
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one has

[x]∗ =

m∪
k=1

∏
t∈T

Dkt.

Put

Z =

{
m∪

k=1

∏
t∈T

Fkt : m ∈ N, Fkt ⊂ Xt, the Fkt’s are closed

}
.

Let us show that for each θ ∈ Θ pθZ is a hypobase in Xθ. To this end we will show even more:
{Qc, Q ∈ pθZ} is a base in Xθ. Obviously,

pθZ =

{
m∪

k=1

∏
t∈θ

Fkt : m ∈ N, Fkt ⊂ Xt, the Fkt’s are closed

}
,

∏
t∈θ

Xt \
m∪

k=1

∏
t∈θ

Fkt =
m∩

k=1

∪
t∈θ

pθCt(F
c
kt).

The set F c
kt being open, so is the set on the right-hand side. Writing, for arbitrary Rkt ⊂ Xt (k ∈

{1, . . . ,m}, t ∈ θ), the identity

m∩
k=1

∪
t∈θ

Rkt =
∪

f(·)∈θm

m∩
k=1

Rkf(k),

we see that the sets
m∩

k=1

∪
t∈θ

pθCt(Gkt) create a base of Xθ since so do even the sets
m∩

k=1

pθCtk (Gktk ).

Obviously, the hypotopological space X with the above hypobase Z is the same as the topological
space X with the Tychonoff’s topology. Herein, for a topological space with closed sets in the role
of hypoclosed ones, hypocompactness is tantamount to compactness. Thus we have deduced from
Theorem 3.1 the following intermediate statement on the way to Tychonoff’s theorem.

Lemma 4.5. Let Xt, t ∈ T, be compact topological spaces such that for any θ ∈
(
2T
)
0

∏
t∈θ

Xt is

compact. Then
∏
t∈T

Xt is compact in the Tychonoff topology.

Applying this statement to T = {1, 2}, we get

Corollary 4.6. The Tychonoff product of two compact topological spaces is compact.

Hence we deduce by induction

Corollary 4.7. The Tychonoff product of a finite number of compact topological spaces is compact.

Juxtaposing Lemma 4.4 with Corollary 4.6, we arrive at the theorem of Tychonoff [2, 3]: The
Tychonoff product of compact topological spaces is itself compact. Note that the deduction does
not rely on the axiom of choice. In fact, this axiom underlies only the assertion of the theorem in its
general form where it postulates nonemptyness of the Cartesian product. But in the cases when all
the Xt’s coincide or all of them are closed intervals the axiom is unnecessary even in the assertion.
In the proof of the Banach – Alaoglu theorem [3, Th. 3.15], just the second situation occurs. So
that theorem turns out independent of the axiom of choice.
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