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Abstract

This study investigates the dynamic response of a non-uniform damped Rayleigh beam on an exponentially
decaying foundation subjected to a harmonic moving load with general boundary conditions. The governing
equation, a fourth-order non-homogeneous partial differential equation with variable coefficients, is discretized
using the Generalized Galerkin Method. Two cases are examined: moving force and moving mass. Closed-
form solutions are obtained for the moving force case using Laplace transform in conjuction with convolution
theorem. For the moving mass case, the Struble asymptotic method cannot simplify the equation for the
moving mass case due to the variable load magnitude, and thus, Runge-Kutta method of order four (RK4)
is employed to obtain a numerical solution. Analytical and numerical solutions are compared for validation
of accuracy of the Runge-kutta scheme and found compared favourably. The effects of some key structural
parameters on dynamic behavior are examined, and resonance conditions are established.

Keywords: Damped rayleigh beam; exponentially decaying foundation; harmonic moving load; generalized galerkin
method.

1 Introduction

The dynamic analysis of non-uniform beams has garnered significant attention in recent years due to its
widespread applications in civil, mechanical, and aerospace engineering. A particular type of beam that has been
extensively studied is the Rayleigh beam, which accounts for the effects of rotatory inertia and shear deformation,
has become a widely accepted model for understanding beam behaviour. Studying how structural components
on foundations react dynamically to shifting loads is essential because it can help us better understand dynamic
properties in various fields, such as mechanical engineering, aerospace, and transportation infrastructure. The
works of several researchers, including (Awodola et al., 2023; Omolofe and Adara, 2023; Akintomide and Awodola,
2023; Adeoye and Adeloye, 2024; Abouelregal et al., 2021; Oni and Ogunbamike, 2014) have made significant
contributions to this field.

Non-uniform Rayleigh beams, characterized by varying cross-sectional properties along their length, provide a
more accurate representation of real-life dynamic structures than traditional uniform Rayleigh beams. Accounting
for non-uniformities in geometry, material properties, or both, allows for a more realistic modeling of structures
such as bridges, buildings, and aircraft wings. Studies have shown that neglecting these non-uniformities
can lead to significant errors in predicting dynamic responses. Recent research endeavors, notably those
presented in Ogunlusi and Awodola (2024); Sarkar et al. (2016) and Oni and Ayankop-Andi (2017) have
substantially advanced our understanding of non-uniform Rayleigh beams. These contributions have yielded
valuable analytical solutions for dynamic responses, enabling engineers to capture the intricacies of real-world
structures. By integrating non-uniformities into their analyses, engineers can garner a deeper insight into the
dynamic behavior of structures, ultimately facilitating the design of safer, more efficient systems. Intensive
damping in beams is a ubiquitous phenomenon in real-world structures, where energy dissipation occurs due to
various factors such as friction, air resistance, and material viscosity. In bridges, for instance, damping helps
mitigate the effects of wind and traffic-induced vibrations, ensuring structural stability. Similarly, in aircraft
wings, damping plays a crucial role in reducing the impact of turbulence and aerodynamic forces. Although
studies have investigated damping in uniform beams (Mahapatra and Panigrahi, 2019; Adetunde et al., 2008;
Akinpelu, 2012) and some have considered non-uniform beams (Alimi and Adekunle, 2018; Ogunlusi et al.;
Tolorunshagba, 2014; Adekunle and Folakemi) these works often neglect the dynamic response of damped and
non-uniform beams subjected to harmonic moving loads on an exponentially decaying foundation. Notably,
research by Simões and da Costa (2019), and Froio et al. (2018) has addressed the dynamic behavior of non-
uniform beams, but with limited consideration of damping effects under harmonic moving loads and without
accounting for the exponential decay of the foundation. This knowledge deficit highlights the need for a
comprehensive analysis of damped and non-uniform beams under harmonic moving loads on an exponentially
decaying foundation. The present work aims to address this shortcoming by providing an accurate and efficient
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method for analyzing the dynamic response of such beams, which is essential for accurately predicting the
dynamic response of real-world structures.

2 Methodology

A fourth-order partial differential equation governs the dynamic behavior of the beam. Suppose that a harmonic
moving load is applied to a non-uniform Rayleigh beam of length L. From time t = 0, the load moves along the
beam at a constant velocity c. A fourth-order partial differential equation determined by Fryba serves as the
governing equation.

∂2

∂y2

[
EI(y)

∂2Q∗(y, t)

∂y2

]
−N

∂2Q∗(y, t)

∂y2
+µ(y)

∂2Q∗(y, t)

∂t2
−µ(y)r0

∂4Q∗(y, t)

∂y2∂t2
+D(y)

∂Q∗(y, t)

∂t
+P (y)Q(y, t) = F (y, t)

(2.1)
where EI(y) is the variable flexural rigidity of the structure, t is the time co-ordinate, y is the spatial co-ordinate,
Q∗(y, t) is the beam deflection, µ(y) is the variable mass per unit length of non-uniform beam, N is the axial
force, r0 is the rotatory inertia factor, P (y) is the exponetial decaying foundation, F (y, t) is the tranvelling load.
D(y) is the material variable damping intensity .

The non-uniform properties of the beam can be effectively represented using power functions, as demonstrated
(Taha and Abohadima, 2008), to approximate the real non-uniformity of the beam, the β and n parameters are
utilized, as

I(y) = I0(1 + βy)n+2

µ(y) = µ0(1 + βy)n

D(y) = Do(1 + βy)n (2)

where the constant damping intensity is D0, the constant mass per unit length of the beam is µ0, and the
constant moment of inertia is I0.

For the sake of generality, it is assumed that the beam is in a state of equilibrium at the beginning, with neither
displacement nor velocity. Hence, the initial conditions are:

Q∗(y, 0) = 0 (3)

and
∂Q∗(y, 0)

∂t
= 0 (4)

We model the elastic foundation using an exponentially decaying function, P (y) as introduced by Omolofe et al.
(2011), which takes the form:

P (y) = P0e
−αy (5)

where α is a constant and P0 is the elastic foundation constant.

Considering the impact of the harmonic load on the beam’s response, the load F (y, t) can be represented as:

F (y, t) = Ff (y, t)

[
1− d2

dt2
[·]

[
Q∗(y, t)

g

]]
6

While the harmonic force Ff (y, t) acting on this engineering structure is given as

Ff (y, t) = Mg cosωtH(y − ct) (7)
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The time t domain of interest is when the mass is on the beam, where the load is modeled as a distributed mass
M .

0 ≤ ct ≤ L (8)

Where H(y − ct) is the heaviside function which is defined as

H(y − ct) =

{
0, y < ct;
1, y ≥ ct.

(9)

with the properties

i
d

dy

(
H(y − ct)

)
= δ(y − ct) (10)

ii

f(y)H(y − ct) =

{
0, y < ct;
f(y), y > ct.

(11)

where the Dirac delta function is represented by δ(y − ct) is a common engineering function used to measure
”of” or ”on” functions, which are frequently used in engineering applications.

The operator d2

dt2
[·] used in (6) is defined as

d2

dt2
[·] = ∂2

∂t2
+ 2c

∂2

∂y∂t
+ c2

∂2

∂y2
(12)

Substituting equations (2), (5), (6), (7)and (12) into equation (1) and taking n = 1 for simplicity yields.

∂2

∂y2

[
EI0(1 + βy)3

∂2Q∗(y, t)

∂y2

]
−N

∂2Q∗(y, t)

∂y2
+ µ0(1 + βy)

∂2Q∗(y, t)

∂t2
− µ0(1 + βy)r0

∂4Q∗(y, t)

∂y2∂t2

+Do(1 + βy)
∂Q∗(y, t)

∂t
+ P0e

−αyQ∗(y, t) +M cosωtH(y − ct)

[
∂2

∂t2
+ 2c

∂2

∂y∂t
+ c2

∂2

∂y2

]
Q∗(y, t)

= Mg cosωtH(y − ct)

(13)

2.1 Approximate analytical solution

The beam problem presented in equation (13) will be addressed using Galerkin’s method, a robust and versatile
technique commonly employed to solve mechanical vibration problems. Notably, the Galerkin approach offers
distinct advantages over traditional Finite Element Methods (FEM), including improved accuracy and
computational efficiency, particularly for problems with complex geometries and boundary conditions. By
leveraging these benefits, the Galerkin method provides a more rigorous and efficient solution, capturing the
underlying physics of the problem with fewer degrees of freedom. The equation of motion for a beam element is
symbolically represented by:

Γ(Q∗(y, t))− F (y, t) = 0 (14)

where Γ is the differential operator that has variable coefficients. The solution form for equation (13) is given
by:

Q∗
j (y, t) =

∞∑
j=1

W ∗
j (t)Z

∗
j (y) (15)

where W ∗
j (t) are coordinates in modal space and Z∗

j (y) are the normal modes of free vibration written as

Z∗
j (y) = sin

ajy

L
+Aj cos

ajy

L
+Bj sinh

ajy

L
+ Cj cosh

ajy

L
(16)
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where the beam vibration’s amplitude and space are defined by the constants Aj , Bj , and Cj . Their values are
determined by the structure’s related boundary condition. Using equation (15) into equation (13), we obtain:

EI0

[(
1 + 3βy + 3β2y2 + β3y3

)
∂4

∂y4

N∑
j=1

W ∗
j (t)Z

∗
j (y) +

(
6βy + 12β2y + 6β3y2

)
∂3

∂y3

N∑
j=1

W ∗
j (t)Z

∗
j (y)

+

(
6β2 + 6β3y

)
∂2

∂y2

N∑
j=1

W ∗
j (t)Z

∗
j (y)

]
+ µ0

(
1 + βy

)
∂2

∂t2

N∑
j=1

W ∗
j (t)Z

∗
j (y)−N

∂2

∂y2

N∑
j=1

W ∗
j (t)Z

∗
j (y)

+Do

(
1 + βy

)
∂

∂t

N∑
j=1

W ∗
j (t)Z

∗
j (y)− µ0r

0

(
1 + βy

)
∂4

∂y2t2

N∑
j=1

W ∗
j (t)Z

∗
j (y) + P0e

αy
N∑

j=1

W ∗
j (t)Z

∗
j (y)

+M cosωtH(y − ct)

[
∂2

∂t2
+ 2c

∂2

∂y∂t
+ c2

∂2

∂y2

] N∑
j=1

W ∗
j (t)Z

∗
j (y)−Mg cosωtH(y − ct) = 0

(17)

To determine Q∗
j (t), the right-hand side of equation (17) must be orthogonal to the function Z∗

k(y). So that

Z∗
k(y) = sin

aky

L
+Ak cos

aky

L
+Bk sinh

aky

L
+ Ck cosh

aky

L
(18)

The unknown constants Aj , Bj , Cj , Ak, Bk, Ck and the natural frequencies aj , ak in equation (16) and (18)
are obtained by applying classical boundary conditions.

Consequently, equation (17) becomes:

N∑
j=0

{
EI0
µ0

(∫ L

0

Z∗iv
j (y)Z∗

k(y)dy + 3β

∫ L

0

yZ∗iv
j (y)Z∗

k(y)dy + 3β2

∫ L

0

y2Z∗iv
j (y)Z∗

k(y)dy

+ β3

∫ L

0

y3Z∗iv
j (y)Z∗

k(y)dy + 6β

∫ L

0

Z∗′′′
j (y)Z∗

k(y)dy + 12β2

∫ L

0

yZ∗′′′
j (y)Z∗

k(y)dy

+ 6β3

∫ L

0

y2Z∗′′′
j (y)Z∗

k(y)dy + 6β2

∫ L

0

Z∗′′
j (y)Z∗

k(y)dy + 6β3

∫ L

0

yZ∗′′
j (y)Z∗

k(y)dy

)
W ∗

j (t)

+

(∫ L

0

Z∗
j (y)Z

∗
k(y)dy + β

∫ L

0

yZ∗
j (y)Z

∗
k(y)dy

)
Ẅ ∗

j(t)−
N

µ0

∫ L

0

Z∗′′
j (y)Z∗

k(y)dyW
∗
j (t)

Do

µ0

(∫ L

0

Z∗
j (y)Z

∗
k(y)dy + β

∫ L

0

yZ∗
j (y)Z

∗
k(y)dy

)
Ẇ ∗

j(t) + r0
(∫ L

0

Z∗′′
j (y)Z∗

k(y)dy

+ β

∫ L

0

yZ∗′′
j Z∗

k(y)dy

)
Ẅ ∗

j(t) +
P0

µ0

∫ L

0

e−αyZ∗
j (y)Z

∗
k(y)dy +

M cosωt

µ0L

(
L

(∫ L

0

H(y − ct)Z∗
j (y)Z

∗
k(y)dy

)
Ẅ ∗

j(t)

+ 2cL

(∫ L

0

H(y − ct)Z∗′
j (y)Z∗

k(y)dy

)
Ẅ ∗

j(t) + c2L

(∫ L

0

H(y − ct)Z∗′′
j (y)Z∗

k(y)dy

)
W ∗

j (t)

)
− Mg cosωt

µ0

∫ L

0

H(y − ct)Z∗
k(y)dy

}
= 0

(19)

After simplification and arrangement of equation (19) one gets
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N∑
j=0

{
EI0
µ0

(
A1(j, k) + 3βA2(j, k) + 3β2A3(j, k) + β3A4(j, k) + 6βA5(j, k) + 12β2A6(j, k)

+ 6β3A7(j, k) + 6β2A8(j, k) + 6β3A9(j, k)

)
W ∗

j (t) +

(
A10(j, k) + βA11(j, k)

)
Ẅ ∗

j(t)−
N

µ0
A8(j, k)W

∗
j (t)

+
D0

µ0

(
A10(j, k) +A11(j, k)

)
Ẇ ∗

j(t) + r0
(
A8(j, k) +A9(j, k)

)
Ẅ ∗

j(t) +
P0

µ0
A12(j, k)W

∗
j (t)

+ ξ0 cosωt

(
LA13(j, k)Ẅ ∗

j(t) + 2cLA14(j, k)Ẅ ∗
j(t) + c2LA15(j, k)W

∗
j (t)

)}
=

Mg cosωt

µ0
A16(t)

(20)

where
2

A1(j, k) =

∫ L

0

Z∗iv
j (y)Z∗

k(y)dy

A2(j, k) =

∫ L

0

yZ∗iv
j (y)Z∗

k(y)dy

A3(j, k) =

∫ L

0

y2Z∗iv
j (y)Z∗

k(y)dy

A4(j, k) =

∫ L

0

y3Z∗iv
j (y)Z∗

k(y)dy

A5(j, k) =

∫ L

0

Z∗′′′
j (y)Z∗

k(y)dy

A6(j, k) =

∫ L

0

yZ∗′′′
j (y)Z∗

k(y)dy

A7(j, k) =

∫ L

0

y2Z∗′′′
j (y)Z∗

k(y)dy

A8(j, k) =

∫ L

0

Z∗′′
j (y)Z∗

k(y)dy

A9(j, k) =

∫ L

0

yZ∗′′
j (y)Z∗

k(y)dy

A10(j, k) =

∫ L

0

Z∗
j (y)Z

∗
k(y)dy

A11(j, k) =

∫ L

0

yZ∗
j (y)Z

∗
k(y)dy

A12(j, k) =

∫ L

0

e−αyZ∗
j (y)Z

∗
k(y)dy

A13(j, k) =

∫ L

0

H(y − ct)Z∗
j (y)Z

∗
k(y)dy

A14(j, k) =

∫ L

0

H(y − ct)Z∗′
j (y)Z∗

k(y)dy

A15(j, k) =

∫ L

0

H(y − ct)Z∗′′′
j (y)Z∗

k(y)dy
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A16(j, k) =

∫ L

0

H(y − ct)Z∗
k(y)dy (21)

ξ = M
Lµ0

is the inertia term.

In order to solve this equation, Using the Fourier series representation of the Heaviside unit step function,
namely,

H(y − ct) =
1

4
+

1

π

∞∑
0

sin(2n+ 1)π(y − ct)

(2n+ 1)
, 0 < y < L (22)

Substituting equation (16), (18) and (22) into (20) after some simplification and rearrangement, one obtains.

(H1 +H2 +H6)W
∗
j (t) +H3Ẇ ∗

j(t) + (H4 +H5)Ẅ ∗
j(t) + ξ cosωt

{
L

(
1

4
B1(j, k)

+
1

π

∞∑
0

cos(2n+ 1)πct

(2n+ 1)
B1a(n, j, k)−

1

π

∞∑
0

sin(2n+ 1)πct

(2n+ 1)
B1b(n, j, k)

)
Ẅ ∗

j(t)

+ 2Lc

(
1

4
B2(j, k) +

1

π

∞∑
0

cos(2n+ 1)πct

(2n+ 1)
B2a(n, j, k)−

1

π

∞∑
0

sin(2n+ 1)πct

(2n+ 1)
B2b(n, j, k)

)
Ẇ ∗

j(t)

+

(
Lc2

(
1

4
B3(j, k) +

1

π

∞∑
0

cos(2n+ 1)πct

(2n+ 1)
B3a(n, j, k)−

1

π

∞∑
0

sin(2n+ 1)πct

(2n+ 1)
B3b(n, j, k)

)
W ∗

j

}
=

LMg cosωt

akµ0

(
θJC + cos γt−Ak sin γt−Bk cosh γt− Ck sinh γt

)

(23)

where

γ =
kπc

L
, θJC = − cos ak +Ak sin ak +Bk cosh ak + Ck sinh ak

H1 =
EI0
µ0

(
A1(j, k) + 3βA2(j, k) + 3β2A3(j, k) + β3A4(j, k) + 6βA5(j, k) + 12β2A6(j, k)

+ 6β3A7(j, k) + 6β2A8(j, k) + 6β3A9(j, k)

)
, H2 =

N

µ0
A8(j, k), H3 =

Do

µ0

(
A10(j, k) +A11(j, k)

)
,

H4 =

(
A10(j, k) + βA11(j, k)

)
, H5 = r0

(
A8(j, k) +A9(j, k)

)
and H6 =

P0

µ0
A12(j, k)
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B1a(j, k) = A10(j, k)

B1b(n, j, k) =

∫ L

0

sin(2n+ 1)πyZ∗
j (y)Z

∗
k(y)dy

B1c(n, j, k) =

∫ L

0

cos(2n+ 1)πyZ∗j(y)Z∗
k(y)dy

B2a(j, k) =

∫ L

0

Z∗′
j (y)Z∗

k(y)dy

B2b(n, j, k) =

∫ L

0

sin(2n+ 1)πyZ∗′
j (y)Z∗

k(y)dy

B2c(n, j, k) =

∫ L

0

cos(2n+ 1)πyZ∗′
j (y)Z∗

k(y)dy

B3a(j, k) = A8(j, k)

B3b(n, j, k) =

∫ L

0

sin(2n+ 1)πyZ∗′′
j (y)Z∗

k(y)dy

B3c(n, j, k) =

∫ L

0

cos(2n+ 1)πyZ∗′′
j (y)Z∗

k(y)dy (24)

Equation (23) governs the non-uniform damped Rayleigh beam on an exponentially decaying foundation subjected
to a harmonic moving load. Two special cases are now discussed.

2.2 Non-uniform damped rayleigh beam traversed by moving force

By neglecting the inertia terms, setting ξ = 0, a simplified model of the differential equation governing the
dynamic response is derived. As a result, Equation (23) simplifies to:

Ẅ ∗
j(t) + σ1Ẇ ∗

j(t) + σ2W
∗
j (t) = AJ cosωt

(
θJC + cos γt−Ak sin γt−Bk cosh γt− Ck sinh γt

)
(25)

where

σ1 =
H3

H4 +H5
, σ2 =

H1 +H2 +H6

H4 +H5
, and AJ =

MgL

kπµ0A3(j, k)(H4 +H5)
(26)

Equation (25) is a second-order ordinary differential equation, and it can be solved using the Laplace transform
method. The Laplace transform is defined as:

L{f(t)} =

∫ ∞

0

f(t)e−St (27)

In conjunction with the initial conditions define in equation (3)and (4), yields the following algebraic equation(
S2 + Sσ1 + σ2

)
W ∗

j (S) =
AJ

2

(
2θJC

S

S2 + ω2
+

S

S2 +Θ2
1

+
S

S2 +Θ2
2

−Ak

(
Θ1

S2 +Θ2
1

+
Θ2

S2 +Θ2
2

)
−Bk

(
S − γ

(S − γ)2 + ω2
+

S + γ

(S + γ)2 + ω2

)
− Ck

(
S − γ

(S − γ)2 + ω2
− S + γ

(S + γ)2 + ω2

))
(28)

where Θ1 = γ + ω and Θ2 = γ − ω.

Simplifying equation (32) further yields:
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W ∗
j (S) =

AJ

2(ρ1 − ρ2)

{(
2θJC

S

S2 + ω2
+

S

S2 +Θ2
1

+
S

S2 +Θ2
2

−Ak

(
Θ1

S2 +Θ2
1

+
Θ2

S2 +Θ2
2

)
−Bk

(
S − γ

(S − γ)2 + ω2
+

S + γ

(S + γ)2 + ω2

)
− Ck

(
S − γ

(S − γ)2 + ω2
− S + γ

(S + γ)2 + ω2

)}
1

S − ρ1

−
{(

2θJC
S

S2 + ω2
+

S

S2 +Θ2
1

+
S

S2 +Θ2
2

−Ak

(
Θ1

S2 +Θ2
1

+
Θ2

S2 +Θ2
2

)
−Bk

(
S − γ

(S − γ)2 + ω2
+

S + γ

(S + γ)2 + ω2

)
− Ck

(
S − γ

(S − γ)2 + ω2
− S + γ

(S + γ)2 + ω2

)}
1

S − ρ2

(29)

Where

ρ1 = −σ1

2
+

√
σ2
1 − 4σ2

2
(30)

ρ2 = −σ1

2
−

√
σ2
1 − 4σ2

2
(31)

To obtain the inverse transform of equation (29), we will utilize the following representation:

F1(S) =
1

S − ρ1
, F2(S) =

1

S − ρ2

G(S) =

(
2θJC

S

S2 + ω2
+

S

S2 +Θ2
1

+
S

S2 +Θ2
2

−Ak

(
Θ1

S2 +Θ2
1

+
Θ2

S2 +Θ2
2

)
−Bk

(
S − γ

(S − γ)2 + ω2
+

S + γ

(S + γ)2 + ω2

)
− Ck

(
S − γ

(S − γ)2 + ω2
− S + γ

(S + γ)2 + ω2

)
(32)

The convolution of Fi and G corresponds to the inverse Laplace transform of equation (29), given by:

Fi ∗G =

∫ t

0

Fi(t− u)G(u)du i = 1, 2 (33)

Thus the Laplace inversion of equation (29) is given by:

W ∗
j (t) =

AJ

2(ρ1 − ρ2)

(
2θJCI1 + I2 + I3 −AK(I4 + I5)−Bk(I6 + I7)− Ck(I6 − I7)− 2θJCI8 − I9 − I10

+Ak(I11 + I12) +Bk(I13 + I14) + Ck(I13 − I14)

)
(34)

where 2

I1 =

∫ t

0

eρ1(t−u) cosωudu

I2 =

∫ t

0

eρ1(t−u) cosΘ1udu

I3 =

∫ t

0

eρ1(t−u) cosΘ2udu

I4 =

∫ t

0

eρ1(t−u) sinΘ1udu

I5 =

∫ t

0

eρ1(t−u) sinΘ2udu

I6 =

∫ t

0

eρ1(t−u)eγu cosωudu
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I7 =

∫ t

0

eρ1(t−u)e−γu cosωudu

I8 =

∫ t

0

eρ2(t−u) cosωudu

I9 =

∫ t

0

eρ2(t−u) cosΘ1udu

I10 =

∫ t

0

eρ2(t−u) cosΘ2udu

I11 =

∫ t

0

eρ2(t−u) sinΘ1udu

I12 =

∫ t

0

eρ2(t−u) sinΘ2udu

I13 =

∫ t

0

eρ2(t−u)eγu cosωudu

I14 =

∫ t

0

eρ2(t−u)e−γu cosωudu (35)

It is simple to demonstrate that

I1 =
1

ω2 + ρ21

(
ω sinωt− ρ1 cosωt+ ρ1e

ρ1t

)
I2 =

1

Θ2
1 + ρ21

(
Θ1 sinωt− ρ1 cosΘ1t+ ρ1e

ρ1t

)
I3 =

1

Θ2
2 + ρ21

(
Θ2 sinωt− ρ1 cosΘ2t+ ρ1e

ρ1t

)
I4 =

1

Θ2
1 + ρ21

(
−Θ1 cosωt− ρ1 sinΘ1t+Θ1e

ρ1t

)
I5 =

1

Θ2
2 + ρ21

(
−Θ2 cosΘt− ρ1 sinΘ2t+Θ2e

ρ1t

)
I6 =

1

ω2 +Ω2
1

(
ω sinωteγt +Ω1 cosωte

γt − Ω1e
ρ1t

)
I7 =

1

ω2 +Ω2
2

(
ω sinωte−γt − Ω2 cosωte

−γt +Ω2e
ρ1t)

)
I8 =

1

ω2 + ρ22

(
ω sinωt− ρ2 cosωt+ ρ1e

ρ2t

)
I9 =

1

Θ2
1 + ρ22

(
Θ1 sinωt− ρ2 cosΘ1t+ ρ1e

ρ2t

)
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I10 =
1

Θ2
2 + ρ22

(
Θ2 sinωt− ρ2 cosΘ2t+ ρ12e

ρ2t

)
I11 =

1

Θ2
1 + ρ22

(
−Θ1 cosωt− ρ2 sinΘ1t+Θ1e

ρ2t

)
I12 =

1

Θ2
2 + ρ22

(
−Θ2 cosΘt− ρ2 sinΘ2t+Θ2e

ρ2t

)
I13 =

1

ω2 +Ω2
3

(
ω sinωteγt +Ω3 cosωte

γt − Ω3e
ρ2t

)
I14 =

1

ω2 +Ω2
4

(
ω sinωte−γt − Ω4 cosωte

−γt +Ω4e
ρ2t)

)
(36)

where
Ω1 = γ − ρ1, Ω2 = γ + ρ1 , Ω3 = γ − ρ2 and Ω4 = γ + ρ2
Substituting equation (36) into equation (34) and then using the result in equation (15) yields:

Q∗
j (y, t) =
∞∑
j=1

{
AJ

2(ρ1 − ρ2)

(
2θJC

1

ω2 + ρ21

(
ω sinωt− ρ1 cosωt+ ρ1e

ρ1t

)
+

1

Θ2
1 + ρ21

(
Θ1 sinωt− ρ1 cosΘ1t+ ρ1e

ρ1t

)

+
1

Θ2
2 + ρ21

(
Θ2 sinωt− ρ1 cosΘ2t+ ρ1e

ρ1t

)
−AK

(
1

Θ2
1 + ρ21

(
−Θ1 cosωt− ρ1 sinΘ1t+Θ1e

ρ1t

)
+

1

Θ2
2 + ρ21

(
−Θ2 cosΘt− ρ1 sinΘ2t+Θ2e

ρ1t

))
−Bk

(
1

ω2 +Ω2
1

(
ω sinωteγt +Ω1 cosωte

γt − Ω1e
ρ1t

)
+

1

ω2 +Ω2
2

(
ω sinωte−γt − Ω2 cosωte

−γt +Ω2e
ρ1t)

))
− Ck

(
1

ω2 +Ω2
1

(
ω sinωteγt +Ω1 cosωte

γt − Ω1e
ρ1t

)
− 1

ω2 +Ω2
2

(
ω sinωte−γt − Ω2 cosωte

−γt +Ω2e
ρ1t)

))
− 2θJC

1

ω2 + ρ22

(
ω sinωt− ρ2 cosωt+ ρ1e

ρ2t

)
− 1

Θ2
1 + ρ22

(
Θ1 sinωt− ρ2 cosΘ1t+ ρ1e

ρ2t

)
− 1

Θ2
2 + ρ22

(
Θ2 sinωt− ρ2 cosΘ2t+ ρ12e

ρ2t

)
+Ak

(
1

Θ2
1 + ρ22

(
−Θ1 cosωt− ρ2 sinΘ1t+Θ1e

ρ2t

)
+

1

Θ2
2 + ρ22

(
−Θ2 cosΘt− ρ2 sinΘ2t+Θ2e

ρ2t

))
+Bk

(
1

ω2 +Ω2
3

(
ω sinωteγt +Ω3 cosωte

γt − Ω3e
ρ2t

)
+

1

ω2 +Ω2
4

(
ω sinωte−γt − Ω4 cosωte

−γt +Ω4e
ρ2t)

))
+ Ck

(
1

ω2 +Ω2
3

(
ω sinωteγt +Ω3 cosωte

γt − Ω3e
ρ2t

)
− 1

ω2 +Ω2
4

(
ω sinωte−γt − Ω4 cosωte

−γt +Ω4e
ρ2t)

))}
×

(
sin

ajy

L
+Aj cos

ajy

L
+Bj sinh

ajy

L
+ Cj cosh

ajy

L

)
(37)

Equation (37) is a mathematical representation of the transverse displacement response of a non-uniform damped
Rayleigh beam supported by an exponentially decaying foundation, when subjected to harmonic moving forces.

2.2.1 Non-uniform damped rayleigh beam traversed by moving mass

When the inertia term is incorporated into the equation (23), the mass ratio becomes non-zero (ξ ̸= 0), giving
rise to the moving mass problem. In this case, a comprehensive solution to the equation is required. Since an
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exact solution is impractical, equation (23) is simplified and rearranged into a more simple form.

(H1 +H2 +H6)W
∗
j (t) +H3Ẇ ∗

j(t) + (H4 +H5)Ẅ ∗
j(t) + ξ0 cosωt

(
△1(n, j, k)Ẅ ∗

j(t)

+△2(n, j, k)Ẇ ∗
j(t) +△3(n, j, k)W

∗
j (t)

)
=

LMg cosωt

akµ0

(
θJC + cos γt−Ak sin γt−Bk cosh γt− Ck sinh γt

)
(38)

where

△1(n, j, k) = L

(
1

4
B1(j, k) +

1

π

∞∑
0

cos(2n+ 1)πct

(2n+ 1)
B1a(n, j, k)−

1

π

∞∑
0

sin(2n+ 1)πct

(2n+ 1)
B1b(n, j, k)

)

△2(n, j, k) = 2Lc

(
1

4
B2(j, k) +

1

π

∞∑
0

cos(2n+ 1)πct

(2n+ 1)
B2a(n, j, k)−

1

π

∞∑
0

sin(2n+ 1)πct

(2n+ 1)
B2b(n, j, k)

)

△3(n, j, k) = Lc2
(
1

4
B3(j, k) +

1

π

∞∑
0

cos(2n+ 1)πct

(2n+ 1)
B3a(n, j, k)−

1

π

∞∑
0

sin(2n+ 1)πct

(2n+ 1)
B3b(n, j, k)

)
(39)

Further simplification and arrangments of equation (38), one obtains

Ẅ ∗
j (t) + Cp1Ẇ

∗
j (t) + Cp2W

∗
j (t) = Cp3 (40)

Cp1 =
H3 + ξ cosωt△2(n, j, k)

(H4 +H5) + ξ cosωt△1(n, j, k)
(41)

Cp2 =
(H1 +H2 +H6) + ξ cosωt△3(n, j, k)

(H4 +H5) + ξ cosωt△1(n, j, k)
(42)

Cp3 =
LMg cosωt

akµ0

(
θJC + cos γt−Ak sin γt−Bk cosh γt− Ck sinh γt

)
× 1

(H4 +H5) + ξ cosωt△1(n, j, k)
(43)

The fourth order Runge-Kutta scheme is used to solve equation (40), a solution to moving mass problem must
be obtained as in equation (37).

3 Discussion of the Closed Form Solutions

Resonance conditions are critical, as the transverse displacement of the beam may increase indefinitely. Equation
(52) reveals that for a non-uniformly damped Rayleigh beam on an exponentially decaying foundation, subjected
to a harmonic moving load, unbounded growth of transverse displacement occurs when the resonance condition
is satisfied, specifically when.

ρ1 = ρ2, ω2 = −ρ21, ω2 = −ρ22, Θ2
1 = −ρ21, Θ2

2 = −ρ21, Θ2
1 = −ρ22, Θ2

2 = −ρ22,

ω2 = −Ω2
1, ω2 = −Ω2

2, ω2 = −Ω2
3, or ω2 = −Ω2

4 (44)

The critical velocity at which this phenomenon occurs is determined by the following relation:

Ci =

((
H3

H4 +H5

)2

− 4
(H1 +H2 +H6)

H4 +H5

) 1
2

(45)

4 Illustrative Examples

This section provides illustrative examples of classical boundary conditions, showcasing the practical application
of the analytical framework established in this study.

46



Okafor et al.; Asian Res. J. Math., vol. 21, no. 1, pp. 35-69, 2025; Article no.ARJOM.129621

4.1 Pinned-pinned boundary condition

The pinned-pinned boundary condition, where the displacement at both ends of the beam is constrained to be
zero but rotation is allowed, accurately models real-world scenarios where beams are supported by pins or hinges.
This boundary condition is crucial for analyzing the static and dynamic behavior of beams under various loading
conditions, providing valuable insights into their structural response. Specifically, the boundary conditions are

At y = 0 (left end): Q∗(0, t) = 0 (no displacement) and ∂2

∂y2Q
∗(0, t) = (no moment)

At y = L (right end): Q∗(L, t) = 0 (no displacement) and ∂2

∂y2Q
∗(L, t) = (no moment)

and, hence for the normal modes;

Z∗
j (0, t) = Z∗

j (L, t) = 0,
∂2

∂y2
Z∗

j (0, t) =
∂2

∂y2
Z∗

j (L, t) = 0 (46)

This implies that;

Z∗
k(0, t) = Z∗

k(L, t) = 0,
∂2

∂y2
Z∗

k(0, t) =
∂2

∂y2
Z∗

k(L, t) = 0 (47)

Applying equation (46) and (47) to equation (25) yields

Aj = Bj = Cj = 0, aj = jπ and ak = kπ (48)

Then, by substituting these coefficients into equations (37) and (43), the displacement responses of a pined-pined
non-uniform Rayleigh beam subjected to moving distributed forces and masses are obtained.

4.2 Fixed-fixed boundary condition

The fixed-fixed boundary condition, where the displacement and rotation at both ends of the beam are constrained
to be zero, accurately models real-world scenarios where beams are rigidly attached to supports. This boundary
condition is essential for predicting the dynamic behavior of beams under various loading conditions, ensuring
accurate results in structural analysis. For a beam with fixed-fixed ends, deflection and slope are zero at the
boundaries. Specifically,the boundary conditions are:

At y = 0 (left end): Q∗(0, t) = 0 (no displacement) and ∂
∂y

Q∗(0, t) = (no rotation)

At y = L (right end): Q∗(L, t) = 0 (no displacement) and ∂
∂y

Q∗(L, t) = (no rotation)
and, hence for the normal modes;

Z∗
j (0, t) = Z∗

j (L, t) = 0,
∂

∂y
Z∗

j (0, t) =
∂

∂y
Z∗

j (L, t) = 0 (49)

This implies that;

Z∗
k(0, t) = Z∗

k(L, t) = 0,
∂

∂y
Z∗

k(0, t) =
∂

∂y
Z∗

k(L, t) = 0 (50)

Applying equation (49) to equation (16) yields

⇒ Aj =
sinh aj − sin aj

cos aj −Aj cosh aj
=

cos aj −Aj cosh aj

sin aj + sinh aj
= −Cj

Bj = −1 (51)

The frequency equation become

⇒ cos aj cosh aj = 1 (52)
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The coefficients Ak, Bk, and Ck can be easily derived by substituting k for j in equations (51) and (52).
Then, by substituting these coefficients into equations (37) and (43), the displacement responses of a fixed-fixed
non-uniform Rayleigh beam subjected to moving distributed forces and masses are obtained.

4.3 Fixed-free boundary condition (The cantilever)

The fixed-free boundary condition, where one end of the beam is rigidly fixed and the other end is free to
move and rotate, simulates real-world scenarios such as cantilever beams. This boundary condition is crucial
for analyzing the dynamic behavior of beams with one end constrained and the other end subjected to external
loads or environmental factors. According, the boundary condition:

At y = 0 (left end): Q∗(0, t) = 0 (no displacement) and ∂
∂y

Q∗(0, t) = 0 (no rotation)

At y = L (right end): ∂2

∂y2Q
∗(L, t) = 0 (no moment) and ∂3

∂y3Q
∗(L, t) = 0 (no shear force)

Q∗(0, t) =
∂

∂y
Q∗(0, t) = 0 and

∂2

∂y2
Q∗(L, t) =

∂3

∂y3
Q∗(L, t) = 0 (53)

and, hence for the normal modes;

Z∗
j (0) =

∂

∂y
Z∗

j (0) = 0 and
∂2

∂y2
Z∗

j (L) =
∂3

∂y3
Z∗

j (L) = 0 (54)

This implies that,

Z∗
k(0) =

∂

∂x
Z∗

k(0) = 0 and
∂2

∂x2
Z∗

k(L) =
∂3

∂x3
Z∗

k(L) = 0 (55)

Substituting equation (46) into equation (26) yields

⇒ Ak = − sin ak + sinh ak

cos ak + cosh ak
=

cosh ak + cos ak

sin ak − sinh ak
= −Ck

Ck = −1 (56)

And the frequency equation for both end conditions is

cos ak cosh ak = −1 (57)

The coefficients Aj , Bj , and Cj can be easily derived by substituting j for k in equations (56) and (57). Then, by
substituting these coefficients into equations (37) and (43), the displacement responses of a fixed-free non-uniform
Rayleigh beam subjected to moving distributed forces and masses are obtained.

5 Numerical Results and Discussions

A numerical investigation was undertaken to validate the preceding analysis, focusing on a non-uniform Rayleigh
beam with specified parameters: length L = 100m, load velocity v = 8.128m/s, elasticity E of 3.9012×109N/m2,
a moment of inertia I of 2.87698× 10−3kg/m2, and mass ratio ξ = 0.5. To facilitate a comprehensive analysis,
the beam’s response to the harmonic moving load will be examined using the established parameters. The
investigation will encompass a broad range of foundation moduli, from 0N/m3 to 400000N/m3, and axial force
values spanning 0N and 2.0× 108N .

Figs. 1-12 illustrate the dynamic deflections of a pinned-pinned non-uniform damped Rayleigh beam system
under harmonic moving forces and masses. The effects of various parameters, including speed c, span length L,
mass ratio ξ, damping coefficient Do, rotatory inertia r0, and axial force N , on the beam’s response amplitude are
examined. Fig. 1 shows the dynamic deflections of the beam under harmonic moving forces with N = 3000000N ,
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Fig. 1. The deflection profile of the moving force system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different speed values

Fig. 2. The deflection profile of the moving mass system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different speed values

r0 = 2.5, and varying c values. Increasing c values lead to an increase in the response amplitude. A similar trend
is observed in Fig. 2 for a harmonic moving mass. Figs. 3 and 4 illustrate the dynamic deflections of the beam
under harmonic moving forces and masses, respectively, with N = 3000000N , r0 = 2.5, and varying L values.
The response amplitude decreases as L increases. Figs. 5 and 6 show the dynamic deflections of the beam
under harmonic moving forces and masses, respectively, with N = 3000000N , r0 = 2.5, and varying ξ values.
The response amplitude increases as ξ increases. Figs. 7 and 8 illustrate the dynamic deflections of the beam
under harmonic moving forces and masses, respectively, with N = 3000000N , r0 = 2.5, and varying Do values.
Increasing Do values lead to a decrease in the response amplitude. Figs. 9 and 10 show the dynamic deflections of
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the beam under harmonic moving forces and masses, respectively, with N = 3000000N , Do = 1500, and varying
r0 values. The response amplitude decreases as r0 increases. Figs. 11 and 12 illustrate the dynamic deflections
of the beam under harmonic moving forces and masses, respectively, with ξ = 2.5, Do = 1500, and varying N
values. The response amplitude decreases as N increases. Figs. 13-24 illustrate the dynamic deflections of a
fixed-fixed non-uniform damped Rayleigh beam system under harmonic moving forces and masses. The effects
of various parameters, including speed c, span length L, mass ratio ξ, damping coefficient Do, rotatory inertia
r0, and axial force N , on the beam’s response amplitude are examined.

Fig. 3. The deflection profile of the moving force system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different Lenght values

Fig. 4. The deflection profile of the moving mass system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different Lenght values
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Fig. 5. The deflection profile of the moving force system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different mass ratio values

Fig. 6. The deflection profile of the moving mass system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different mass ratio values

Fig. 13 shows the dynamic deflections of the beam under harmonic moving forces with N = 3000000N , r0 = 2.5,
and varying c values. Increasing c values lead to an increase in the response amplitude. A similar trend is
observed in Fig. 14 for a harmonic moving mass. Figs. 15 and 16 illustrate the dynamic deflections of the
beam under harmonic moving forces and masses, respectively, with N = 3000000N , r0 = 2.5, and varying L
values. The response amplitude decreases as L increases. Figs. 17 and 18 show the dynamic deflections of the
beam under harmonic moving forces and masses, respectively, with N = 3000000N , r0 = 2.5, and varying ξ
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Fig. 7. The deflection profile of the moving force system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different damping coefficient

values

Fig. 8. The deflection profile of the moving mass system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different damping coefficient

values

values. The response amplitude increases as ξ increases. Figs. 19 and 20 illustrate the dynamic deflections of
the beam under harmonic moving forces and masses, respectively, with N = 3000000N , r0 = 2.5, and varying
Do values. Increasing Do values lead to a decrease in the response amplitude. Figs. 21 and 22 show the
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Fig. 9. The deflection profile of the moving force system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different rotatory inertia

values

Fig. 10. The deflection profile of the moving mass system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different rotatory inertia

values

dynamic deflections of the beam under harmonic moving forces and masses, respectively, with N = 3000000N ,
Do = 1500, and varying r0 values. The response amplitude decreases as r0 increases. Figs. 23 and 24 illustrate
the dynamic deflections of the beam under harmonic moving forces and masses, respectively, with ξ = 2.5,
Do = 1500, and varying N values. The response amplitude decreases as N increases. Figs. 25-36 illustrate
the dynamic deflections of a fixed-free non-uniform damped Rayleigh beam system under harmonic moving
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Fig. 11. The deflection profile of the moving force system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different axial force values

Fig. 12. The deflection profile of the moving mass system’s pinned-pinned non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different axial force values

forces and masses. The effects of various parameters, including speed c, span length L, mass ratio ξ, damping
coefficient Do, rotatory inertia r0, and axial force N , on the beam’s response amplitude are examined. Fig. 25
shows the dynamic deflections of the beam under harmonic moving forces with N = 3000000N , r0 = 2.5, and
varying c values. Increasing c values lead to an increase in the response amplitude. A similar trend is observed
in Fig. 26 for a harmonic moving mass. Figs. 27 and 28 illustrate the dynamic deflections of the beam under
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Fig. 13. The deflection profile of the moving force system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different speed values

Fig. 14. The deflection profile of the moving mass system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different speed values
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Fig. 15. The deflection profile of the moving force system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different Lenght values

Fig. 16. The deflection profile of the moving mass system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different Lenght values

harmonic moving forces and masses, respectively, with N = 3000000N , r0 = 2.5, and varying L values. The
response amplitude decreases as L increases. Figs. 29 and 30 show the dynamic deflections of the beam under
harmonic moving forces and masses, respectively, with N = 3000000N , r0 = 2.5, and varying ξ values. The
response amplitude increases as ξ increases. Figs. 31 and 32 illustrate the dynamic deflections of the beam
under harmonic moving forces and masses, respectively, with N = 3000000N , r0 = 2.5, and varying Do values.
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Fig. 17. The deflection profile of the moving force system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different mass ratio values

Fig. 18. The deflection profile of the moving mass system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different mass ratio values

Increasing Do values lead to a decrease in the response amplitude. Figs. 33 and 34 show the dynamic deflections
of the beam under harmonic moving forces and masses, respectively, with N = 3000000N , Do = 1500, and
varying r0 values. The response amplitude decreases as r0 increases.
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Fig. 19. The deflection profile of the moving force system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different damping coefficient

values

Fig. 20. The deflection profile of the moving mass system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different damping coefficient

values
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Fig. 21. The deflection profile of the moving force system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different rotatory inertia

values

Fig. 22. The deflection profile of the moving mass system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different rotatory inertia

values

Figs. 35 and 36 illustrate the dynamic deflections of the beam under harmonic moving forces and masses,
respectively, with ξ = 2.5, Do = 1500, and varying N values. The response amplitude decreases as N increases.
Fig. 37 presents a comparative analysis of the transverse displacement of a non-uniform damped Rayleigh beam
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Fig. 23. The deflection profile of the moving force system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different axial force values

Fig. 24. The deflection profile of the moving mass system’s fixed-fixed non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different axial force values

system under harmonic moving forces and masses. A key observation from this figure is that the deflection caused
by the moving mass is substantially higher than that induced by the moving force. Consequently, resonance
occurs earlier in the moving force system than in the moving mass system. Fig. 38 presents a comparative study
between the analytical and numerical solutions for the dynamic response of a non-uniform damped Rayleigh
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Fig. 25. The deflection profile of the moving force system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different speed values

Fig. 26. The deflection profile of the moving mass system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different speed values

beam system. The results show an excellent correlation between the two solutions, with the numerical solution
obtained using the Runge-Kutta method closely matching the analytical solution. The dynamic response of
non-uniform damped Rayleigh beams on exponentially decaying foundations subjected to harmonic moving
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Fig. 27. The deflection profile of the moving force system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different Lenght values

Fig. 28. The deflection profile of the moving mass system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different Lenght values

loads is significantly influenced by various parameters. Specifically, increasing speed leads to an exponential rise
in deflection. Conversely, augmenting damping, rotatory inertia, and axial force serves to mitigate deflection,
yielding more robust structures. Notably, this trend holds consistent across all three boundary conditions

62



Okafor et al.; Asian Res. J. Math., vol. 21, no. 1, pp. 35-69, 2025; Article no.ARJOM.129621

Fig. 29. The deflection profile of the moving force system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different mass ratio values

Fig. 30. The deflection profile of the moving mass system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different mass ratio values

considered, namely pinned-pinned, fixed-fixed, and fixed-free. These findings have significant implications for
the design, construction, and maintenance of various structures, including bridges, buildings, and machines,
founded on exponentially decaying foundations. Optimizing beam properties and implementing vibration
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Fig. 31. The deflection profile of the moving force system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different damping coefficient

values

Fig. 32. The deflection profile of the moving mass system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different damping coefficient

values
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Fig. 33. The deflection profile of the moving force system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different rotatory inertia

values

Fig. 34. The deflection profile of the moving mass system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different rotatory inertia

values

control measures are essential to ensure structural safety and integrity under dynamic loads. The proposed
model has numerous real-world applications in structural engineering, particularly in the design and analysis of
transportation infrastructure, buildings, industrial structures, and energy infrastructure. For instance, it can be
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Fig. 35. The deflection profile of the moving force system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different axial force values

Fig. 36. The deflection profile of the moving mass system’s fixed-free non-uniform damped
Rayleigh beam under the influence of a harmonic moving load for different axial force values

used to analyze bridge response to moving loads, wind, and seismic forces, as well as highway pavement response
to traffic loading and railway track response to train loading. This study demonstrates the practical relevance
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Fig. 37. Transverse deflection of the non-uniform damped Rayleigh beam for moving force and
moving mass

Fig. 38. Comparison of the analytical and numerical solution

of the proposed model in structural engineering, highlighting its potential to inform the design and analysis of
various structures, including buildings, industrial structures, and energy infrastructure. By providing insights
into the dynamic response of non-uniform damped Rayleigh beams, this research contributes to the development
of more robust and resilient structures that can withstand dynamic loads.
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6 Conclusion

This investigation presents a comprehensive dynamic analysis of a non-uniform damped Rayleigh beam resting on
an exponentially decaying foundation, subjected to harmonic moving loads. Employing the Generalized Galerkin
Method (GGM), the governing fourth-order partial differential equations are transformed into a second-order
ordinary differential equation. Analytical solutions are obtained using the Laplace transform and convolution
theorem for the moving force problem, while the Runge-Kutta method of order four is utilized for the moving
mass problem. A parametric study is conducted to examine the influence of vital loads and structural parameters,
including load velocity, beam length, axial forces, damping coefficient, and mass ratio, on the dynamic response
characteristics of the beam under three distinct boundary conditions: pinned-pinned, fixed-fixed, and fixed-free.
The findings of this study demonstrate excellent agreement with existing research, underscoring its potential for
practical applications in structural and bridge engineering.
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