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Abstract 

 
Choosing the right probability distribution for a particular phenomenon of interest sometimes becomes an 

issue for researchers. Relationship among probability distributions can be explored by transformation of 

random variables, combination of multiple variables and by approximations. This study reviewed some of 

these commonly used probability distributions and their properties and highlighted their basic differences and 

links. The distributions considered were both discrete and continuous in nature. While algebraic processes 

were developed to establish the links among the selected probability distributions, a schematic relationship 

was utilized to foster better understanding of the relationships among the selected distributions. 
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1 Introduction 
 

The probability of an event is the possibility of that event to occur subject to pre-event factors. Probability takes 

its root from the concept of relative frequency of an observed event. It’s a way of inferring what might happen if 

certain events have occurred. An event is almost sure if it takes probability 1 while the event that will not 

happen with certainty takes value 0. Hence, for a number of events which assume probability values between 0 

and 1, the sum of all the probabilities is 1. The description of the concepts of probability by mathematical 

functions and graphs is termed probability distribution. There are different distributions that characterized life 

phenomena; knowledge of such is handy in statistical inference and other modelling problems that involve 

uncertainty in the parameters of interest (Nwosu et al, 2016). 

 

The concept of distribution is an important aspect of data science that provides foundation for inferential 

statistics. Reviewing relationships between different probability distributions is handy because finding the 

probability of a certain distribution sometimes depends on the table of another distribution. Also, parameter 

estimations and simulation techniques rely heavily on good knowledge of probability distributions as limiting 

form or summations, product or sometimes integrations of one or more probability distributions lead to another 

distribution (Viti et al, 2015).  

 

The common distributions are interwoven and somehow confusing especially for non-statistical experts 

(Wroughton and Cole, 2013). Thus, there is always a problem in the selection of the right probability 

distribution to use in a particular scenario. When the variables in some distributions change, the distributions are 

reduced to some other simple distributions. The relationships that exist among distributions can also be said to 

be specific, general, special, identical or functional in nature (Wen, 2022; Gao and Shan, 2018; Mao and Cheng, 

2011). 

 

2 Probability Distributions 
 

2.1 Bernoulli distribution 
 

If an experiment is performed with two possible outcomes (success or failure), a random variable that takes 

value 1 in case of success and 0 in case of failure constitutes a Bernoulli random variable (Oyeka, 2013).  Let X 

be a discrete random variable which supports 𝑅𝑋 = {0,1}. The random variable X has a Bernoulli distribution 

with parameter 𝑝 ∈ (0,1) if its probability mass function is 

 

                        𝑝(𝑥) =       p if x =1       (1) 

1-p            if x = 0 

0                      if 𝑥 ∉ 𝑅𝑋 

 

 

Mean(x)= p and Variance (x) = p(1-p) 

 

2.2 Binomial distributions 
 

Let X be a discrete random variable. Let 𝑛 ∈N, p ∈ (0,1) and the support of X be 𝑅𝑥 = {0,1, … 𝑛}. The random 

variable X has a Binomial distribution with parameters n and p if its probability mass function is given by (2). 

 

𝑝(𝑥) = (
𝑘
𝑥

) 𝑝𝑥(1 − 𝑝)𝑘−𝑥    𝑥 = 0,1,2, … , 𝑘; 0 ≤ 𝑝 ≤ 1                                  (2) 

 

𝑀𝑒𝑎𝑛(𝑥) = 𝑘𝑝 and 𝑉𝑎𝑟(𝑥) = 𝑘𝑝(1 − 𝑝). 

 

The Binomial distribution brings out Bernoulli, Hypergeometric and Negative Binomial distributions (Banik and 

Kibria, 2009; Wackerly et al, 2008). When the number of trials, 𝑥 = 1 in (1), the trial becomes a Bernoulli trial. 

When the Binomial experiment is done without replacement, we have Hypergeometric distribution. However, 
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when the number of trials in Binomial trials is random until a desired number of success or failure is achieved 

gives rise to Negative Binomial Distribution. 

 

2.3 Hypergeometric distribution 
 

The Hypergeometric distribution involves sampling from a finite population without replacement. Hence, the 

independent assumption of the Binomial distribution is relaxed in the Hypergeometric distribution. However, 

when sample size is small relative to the population size, the random variable can be approximated to Binomial 

distribution provided other Binomial conditions are met. Consider a box with 𝑏 blue balls and N-b white balls, if 

𝑚 blue balls are chosen at random from 𝑏 blue balls and n-m white balls from the white balls, then the random 

variable 𝑚 is said to be Hypergeometric distributed with probability mass function given in (2). 

 

𝑓(𝑚; 𝑏, 𝑛, 𝑁) =
( 𝑏

𝑚)( 𝑁−𝑏
𝑛−𝑚)

(𝑁
𝑛)

 ∀ 𝑚𝜖{max(0, 𝑛 − (𝑁 − 𝑏)) , 1, … , min(𝑏, 𝑛)}, 𝑏 ≤ 𝑁, 𝑛 ≤ 𝑁                (3) 

 

Where 𝑚 is the number of observed success from the population size 𝑁. The mathematical expectations based 

on the first two moments about the origin are: 

 

Mean(m) = 𝑛𝑝; Var(m) =
(𝑁−𝑛)𝑛𝑏

(𝑁−1)𝑁
[

𝑁−𝑏

𝑁
] = 𝑛𝑝(1 − 𝑝)

(𝑁−𝑛)

(𝑁−1)
; where p =

𝑏

𝑁
   

 

If 
𝑏

𝑁
= 𝑝, then the mean of the Hypergeometric distribution is the same with that of the Binomial distribution 

and the variance is only different by a factor 
(𝑁−𝑛)

(𝑁−1)
. If 𝑛 = 1,  the Hypergeometric distribution becomes Binomial 

distribution. The Binomial distribution is preferred when the sample size 𝑛 is small in relation to population size 

𝑁, otherwise the Hypergeometric distribution should be applied.  

 

2.4 Negative binomial distribution 
 

The Negative Binomial distribution (NBD) is applicable where there are discrete dichotomous outcomes until 

the desired number of successes is achieved. A coin can be tossed repeatedly until m number of heads appears. 

Hence, the number of trials in NBD is not fixed as in Binomial distribution. If the number of trials denoted by 𝑘 

result in 𝑚 success, then, the probability mass function for NBD is: 

 

𝑓(𝑘; 𝑚, 𝑝) = (
𝑘 − 1
𝑚 − 1

) 𝑝𝑚(1 − 𝑝)𝑦−𝑚 ∀ 𝑘 = 𝑚, 𝑚 + 1, …     (4) 

 

𝑀𝑒𝑎𝑛(𝑘) =
𝑚

𝑝
    and  𝑉𝑎𝑟(𝑘) =

𝑚(1−𝑝)

𝑝2  

 

2.5 Geometric distribution 
 

With the probability function of a negative binomial distribution as given in equation (4), the probability 

function becomes 𝑃(𝑚) =  𝑝𝑞𝑚  so that the probabilities of the random variables K for 𝑚 = 0,1,2, … are in 

geometric progression with common ratio 1 − 𝑝. Thus, a random variable K becomes a geometric distribution if 

it assumes only the non-negative values and its probability function  

 

            𝑃(𝑚) = 𝑝𝑞𝑚, 𝑚 = 0,1, 2,... 0 < 𝑝 < 1                                       (5)  

              

                          0,    otherwise 

 

𝑀𝑒𝑎𝑛 = (
1

𝑝
) and Var = (

𝑞

𝑝2) 

 

Equation (5) also arises from Bernoulli trials in which the outcome of any trial is either a success or a failure and 

the probability of success of any trial is p and lack of memory (Bhuyan, 2010). 
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The Geometric distribution is a special case of NBD in which only a success is required from 𝑘 number of trials. 

Hence, when 𝑚 = 1 in NBD, it becomes a Geometric distribution. The maximum number of trials in NBD and 

Geometric distributions is unknown prior to the experiment. The random variable in geometric distribution is 

the number of trials until the first success in a repeated Bernoulli experiments. 

 

2.6 Poisson distribution 
 

The Poisson distribution is widely applied in queue systems where counts of a rare and independent event are 

measured within a given interval of time, length, area or volume. The longer the period or region of 

observations, the more the chance to observe more than one object. Examples of events that could be described 

by the Poisson distribution includes: number of misprints in a typed page, distribution of bacteria on some 

surface, number of arrivals in a particular polling unit and number of disabled customers arriving a particular 

bank in a given interval of time can said to be Poisson distributed. If the arrival rate is denoted by a parameter 𝛿 

and the number of customer denoted by 𝑚, then, the probability mass function is: 

 

𝑓(𝑚: 𝛿) =
1

𝑚!
𝛿𝑚𝑒−𝛿  ∀ 𝑚 = 0,1,2, … , ∞.       (6)  

 

𝑀𝑒𝑎𝑛(𝑚) = 𝑉𝑎𝑟(𝑚) = 𝛿 and 𝑒 = 2.71828 

 

The limiting form of a binomial distribution as the number of trials is large approaches a Poisson distribution 

with 𝑝 =
𝛿

𝑛
. 

 

2.7 Normal distribution  
 

The Poisson and other discrete distributions discussed so far present finite number of values within a given 

interval, there are other set of distributions that allow infinite number of values within a given interval. These 

are continuous probability distributions. The most important of such is the Normal distribution and all other 

statistical distributions that revolve around it. This is well captured in central limit theorem. For example, a 

sample from a Poisson distribution, the sample distribution tends to normality as sample size approaches 

infinity. This is demonstrated with randomly generated sample of size 1000 from Poisson probability 

distribution (Fig. 1). Hence, the limiting form of discrete and other known distribution gives the Normal 

distribution. 

 

 
 

Fig. 1. Histogram plot from randomly generated Poisson data 
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The Normal distribution is characterized by two parameters, the mean and the variance. The mean represents the 

central value while the standard deviation measures how disperse the values are from the mean. As presented in 

Fig. 2, the Normal distribution has the following characteristics: 

 

(i) The area under the curve equals 1 

(ii)  It is bell shape curve 

(iii)  It is symmetric around the mean 

(iv) The Normal mean, median and mode coincides at the centre of the curve 

(v) The probability distribution has two parameters: the mean and the standard deviation.   

 

If a random variable 𝑚 is distributed as a Normal distribution, the probability density function of 𝑚 is: 

 

𝑓(𝑚; 𝜇, 𝛿) = (
1

2𝜋𝛿
)0.5𝑒𝑥𝑝

−(𝑚−𝜇)2

2𝛿2   ∀ − ∞ < 𝑚 < ∞;  𝜇, 𝛿 > 0                  (7) 

 

If 𝜇 = 0 and 𝛿 = 1, it gives a standard Normal distribution. 

 

 
 

Fig. 2. Graphical Description of a Standard Normal Distribution from Number Sequences 

 

2.8 Exponential family of distributions 
 

There are details of exponential family of probability distributions documented in literature (Ross, 2007), 

however, only few of these studies established the links between them. In this section, relationships between 

commonly used probability distributions from exponential family are revisited. 

 

An Exponential distribution is a special case of Gamma family known with modelling the time interval between 

two successive Poisson events. The Gamma distribution is useful in finding the joint probability distribution of 

hydrological events (frequency analysis for storms, rainfall for a given time interval). The Gamma distribution 

also gives probability distribution on the amount of time (waiting time) required for certain number of events or 

occurrences in Poisson processes. Repeating Exponential distribution with parameter 𝜆 for a number of times 

say 𝑛 give rise to Gamma with parameters 𝑛 𝑎𝑛𝑑 𝜆 in (8) while if the shape parameter of Gamma distribution 
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takes only positive integer values, the distribution is described as Erlang distribution which is useful in queue 

processes to predict waiting times. When n equals 1 in (8), it gives rise to equation (9). Also, when the scale 

parameter of Gamma (𝑛, 𝜆) is 
1

2
 or 2 and shape parameter is 

𝑛

2
, then the resulting distribution is the Chi-squared 

distribution with degrees of freedom equals its mean value in (10). 

 

 Likewise, a Beta distribution is related to a Uniform distribution. If the two shaped parameter in Beta is unity, 

then the resulting distribution is the Uniform distribution. Both the Beta and the Uniform distributions serve as 

prior to commonly used distributions like Binomial in Bayesian analysis. Similarly, the Poisson-Gamma mix 

distribution produces NBD which is useful in Bayesian and uncertainty analysis. Details relationships of 

commonly used univariate distributions are display in the schematic diagram (Fig. 3). Also, list of commonly 

encountered continuous probability distributions and their basic properties are displayed in Table 1. Some 

details of other related probability distributions are available in the literature (Horálek, 2013; Ouarda et al, 2016; 

Rohatgi & Saleh, 2001, Oguntade & Oladimeji, 2023). 
 

𝑓(𝑚) =
𝜆𝑛𝑚𝑛−1𝑒𝑥𝑝−𝑚𝜆

Γ(𝑛)
  ; 𝑚 > 0                                                                            (8) 

 

From (8), when n =1 and n = 
𝑛

2
 , 𝜆 = 2, we have  (9) and (10) respectively. 

 

f(m)=𝜆𝑒𝑥𝑝−𝑚𝜆;  𝑚 > 0                      (9) 

 

𝑓(𝑚) =
2

𝑛
2 𝑚

𝑛
2−1

𝑒𝑥𝑝
−𝑚

2

Γ(
𝑛

2
)

 ;   𝑚 > 0                                (10) 

 

2.9 Chi-square distribution 
 

A random variable X has a Chi-square distribution if it can be written as a sum of squares: 
 

𝑋 = 𝑌1
2 + 𝑌1

2 + ⋯ + 𝑌1
2, 𝑌1, 𝑌2,…𝑌𝑛 are n mutually independent standard normal random variables. Let X be an 

absolutely continuous random variable. Let its support be the set of positive real numbers: 𝑅𝑋 = [0, ∞). If 𝑛 ∈
𝑁, 𝑡ℎ𝑒𝑛 𝑋  has a Chi- square distribution with n degrees of freedom if probability density function (pdf) is 

 

                𝑐𝑥
𝑛

2
−1exp (−

1

2
𝑥), if 𝑥 ∈ 𝑅𝑋 

𝑓(𝑥) =                           (11) 

                 0,                       if 𝑅 ∉ 𝑅𝑋, 
 

where c is a constant: 𝑐 =
1

2
𝑛
2Γ(

𝑛

2
)

 𝑎𝑛𝑑 Γ() is the Gamma function in essence, Chi-square variate implies the 

square of a standard normal variate. Thus, if U is a normal variate with mean 𝜇 𝑎𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝜎2 then  𝑋 =
𝑈−𝜇

𝜎
~𝑁(0,1) 𝑎𝑛𝑑 𝑋2 = (

𝑈−𝜇

𝜎
)2  is a Chi-square with 1 degree of freedom. In general, if 𝑈1, 𝑈2, … 𝑈𝑛  are 

independent normal variables with means 𝜇1, 𝜇2, … 𝜇𝑛 and variances 𝜎1
2, 𝜎2

2, … 𝜎𝑛 
2  respectively, then 𝜒 =

Σ(
𝑈𝑖−𝜇𝑖

𝜎𝑖
)2 is a Chi-square variate with n degree of freedom 

 

2.10 Gamma distribution 
 

Gamma distribution is a generalization of the Chi-square distribution. If a random variable Z has a Chi square 

distribution with n degrees of freedom and k is a strictly positive constant, then the random variable x defined as 

𝑋 =
ℎ

𝑛
𝑍 has a Gamma distribution with parameters n and h. Let X be an absolutely continuous random variable 

and its support be the set of positive real numbers: 𝑅𝑋 = [0, ∞). Let 𝑛, ℎ ∈ ℝ++ so that the random variable X 

has a Gamma distribution with parameters 𝑛 𝑎𝑛𝑑 ℎ if its pdf is  
 

                𝑐𝑥
𝑛

2
−1exp (−

𝑛

ℎ

1

2
𝑥), if 𝑥 ∈ 𝑅𝑋 

𝑓(𝑥) =              (12) 

                0,                              if 𝑅 ∉ 𝑅𝑋 
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where c is a constant: 𝑐 =
(

𝑛
ℎ)

𝑛
2

2
𝑛
2Γ(

𝑛

2
)

 𝑎𝑛𝑑 Γ() is the Gamma function 

2.11 F-distribution 
 

A random variable X has F distribution if it can be written as a ratio  𝑋 =
𝑋1/𝑛1

𝑋2/𝑛2
  between a Chi-square random 

variable with 𝑛1 degrees of freedom and a Chi-square random variable 𝑌2 independent of  𝑌1 with 𝑛2 degrees of 

freedom. 

 

3. Relationship among Selected Distributions 
 

3.1 Binomial relationship with bernoulli distribution 
 

The binomial distribution relates closely with Bernoulli distribution. Recall that a random variable has a 

binomial distribution with parameters n = 1 and p Iff it has a Bernoulli distribution with parameter p. The two 

distributions are proposed to be equivalent by showing that they have the same probability mass function (pmf). 

The expected pmf of a binomial distribution with n = 1, is  

 

 
 

Thus, equation (13) becomes (1) 

 

3.2 Poisson distribution relationship with exponential distribution 
 

Let 𝑟1, 𝑟2, … . 𝑟𝑛  be the time elapsed for the first occurrence, between the first and second occurrences and 

between (𝑛 + 1)𝑡ℎ and 𝑛𝑡ℎ occurrences respectively  

 

Let 𝑋 be the number of occurrences of the event so that 

 

 𝑋 ≥ 𝑥 𝑖𝑓𝑓 𝑟1+.  .  . +𝑟𝑛  ≤ 1. 
This is true if 𝑝(𝑋 ≥ 𝑥) = 𝑃(𝑟1+ . . +𝑟𝑛 ≤ 1)   ∀ 𝑥𝜖𝑅𝑋 

 

This can be verified as follows: 

 

 𝑃(𝑟1 + ⋯ + 𝑟𝑛 ≤ 1) 

 

Also, let 𝑧 = 𝑟1 + ⋯ + 𝑟𝑛 be the sum of waiting time. The sum of independent exponential random variables 

with parameter 𝜆 is a Gama random variable with parameters 2𝑥 and 
𝑥

𝜆
 

 

The pdf is given as  

 

 𝑓𝑧(𝑥) = {𝑐𝑥𝑥−1 

0
  

exp(−𝜆𝑥) , 𝑖𝑓 𝑥𝜖{0, ∞}

                   𝑖𝑓 𝑥 ∉ {0, ∞},
                 (16) 

 

where 𝑐 =
𝜆𝑥

Γ(𝑥)
=  

𝜆𝑥

(𝑥−1)!
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Integrating 𝑓𝑧(𝑥), we have 

 

 𝑝(𝑟1 + ⋯ + 𝑟𝑥 ≤ 1) = 𝑝(𝑧 ≤ 1) 

                                = ∫ 𝑓𝑧(𝑥)𝑑𝑥
1

−∞
 

            = 𝑐 ∫ 𝑧𝑥−11

0
exp(−𝜆𝑧) 𝑑𝑥. 

   = 𝑐[∑
(𝑥−1)!

(𝑥−𝑖)!

𝑥−1
𝑖=1 .

1

𝜆𝑖
exp(−𝜆) −

(𝑥−1)!

𝜆𝑥 . exp(−𝜆) +
(𝑥−1)!

𝜆𝑥     (17) 

   = 1 − ∑  
𝜆!

𝑗!

𝑥−1
𝑗=0  exp (−𝜆) 

 

Computing 𝑃(𝑋 ≥ 𝑥) = 1 − 𝑃(𝑋 ≤ 𝑥) 

                 = 1 − 𝑃(𝑋 ≤ 𝑥 − 1) 

         = 1 − ∑ 𝑃𝑥−1
𝑗=0 𝑥(𝑗) 

         = 1 − ∑
𝜆𝑗

𝑗!

𝑥−1
𝑗=0 exp (−𝜆) 

                                    = 𝑃(𝑟1 + ⋯ + 𝑟𝑥 ≤ 1)                                                             (18) 

 

3.3 Binomial distribution relationship with poisson distribution 
 

Poisson distribution is a limit case of binomial distribution.  

 

(i) For a binomial, the parameter 𝑛 is indefinitely large: 𝑛 → ∞        

(ii) The probability of success for each trial is constant and indefinitely small :  𝑃 → 0 

 

(a) 𝑛𝑝 is finite so that if 𝑛𝑝 = 𝜃, 𝑝 =
𝜃

𝑛
,     𝑞 = 1 −

𝜃

𝑛
. 

 

Since by definition, 

 

 𝑏(𝑥, 𝑛, 𝑝) = (
ℎ
𝑥

) 𝑝𝑥𝑞𝑛−𝑥 = (
𝑛
𝑥

) (
𝑃

1−𝑝
)

𝑥
(1 − 𝑝)𝑛 

                =
𝑛(𝑛−1)(𝑛−2)…(𝑛−𝑥+1)

𝑥!
 

(
𝜃

𝑛
)

𝑥
 

(1−
𝜃

𝑛
)𝑥

(1 −
𝜃

ℎ
)

𝑛

 

              = (1 −
1

𝑛
) (1 −

2

𝑛
) … (1 −

𝑥−1

𝑛
) 𝜃𝑥 (1 −

𝜃

ℎ
)

𝑛

 

               =
𝑒−𝜃𝜃𝑥

𝑥!
,    𝑥 = 0, 1,2, …              (19) 

 

3.4 Poisson distribution as a limiting case of the negative binomial distribution 
 

In this case, Negative Binomial Distribution is approximated to a poison distribution. As 𝑟 tends to infinite and 

𝑝 tends to zero with 𝑟𝑝 remaining fixed, the negative binomial distribution tends to a poisson distribution. 

Therefore  

 

 lim
𝑟→∞

𝑃(𝑥) = lim
𝑟→∞

(
𝑥 + 𝑟 − 1

𝑟 − 1
) 𝑝𝑟𝑞𝑟 

                 = lim
𝑟→∞

(
𝑥 + 𝑟 − 1

𝑟 − 1
) 𝑞−𝑟 (

𝑝

𝑞
)

𝑥

 

  lim
𝑟→∞

 
(𝑥+𝑟−1) (𝑥+𝑟−2)… (𝑟+1)𝑟

𝑥!
 (1 + 𝑝)−𝑟 

      (
𝑃

1+𝑃
)

𝑥

 

= lim
𝑞→∞

[
1

𝑥!
 (1 +

𝑥−1

𝑟
) (1 +

𝑥−2

𝑟
) … (1 +). 1. 𝑟𝑥  (1 + 𝑝)−𝑟  (

𝑃

1+𝑃
)

𝑥

] 

 =
1

𝑥!
lim
𝑟→∞

[(1 + 𝑝)−6  (
𝑟𝑃

1+𝑃
)

𝑥

] 

 =
𝜃𝑥

𝑥!
lim
𝑟→𝑦

[(1 +
𝜃

𝑟
)]

−𝑟

lim
𝑟→∞

(1 +
𝜃

𝑟
)

−𝑥

 

 
𝜃𝑥

𝑥!
𝑒−𝜃 . 1 = 𝑒−𝜃 𝜃𝑥

𝑥
!                                     (20) 
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3.5 Approximation of hypergeometric distribution to binomial distribution 
 

Let the pdf of Hypergeometric distribution be  

 

 𝑃(𝑋 = 𝑘) =  
(

𝑀
𝑘

)(
𝑁−𝑀
𝑛−𝑘

)

(
𝑁
𝑛

)
 , 𝑘 = 0, 1, 2 … , min(𝑛, 𝑀) 

As 𝑁 → ∞ and 
𝑀

𝑁
= 𝑝, 

 𝑃(𝑋 = 𝑘|𝑀, 𝑛 𝑁) =  
(

𝑀
𝑘

)(
𝑁−𝑀
𝑛−𝑘

)

(
𝑁
𝑛

)
 

  =
𝑀!        .   (𝑁−𝑀)!

𝐾!(𝑀−𝐾)!(𝑛−𝑘)!(𝑁−𝑀−𝑛+𝑘)
       

𝑛!(𝑁−𝑛)!

𝑁!
 

 =
(𝑀−1)(𝑀−2)…(𝑀−𝐾+1)

𝐾!
 

  
(𝑁−𝑀)(𝑁−𝑀−1)…(𝑁−𝑀−𝑛+𝐾+1)

(𝑛−𝑘)!
 

 
𝑛!

𝑁(𝑁−1)(𝑁−2)…(𝑁−𝑛+1)
 

𝑛!

𝑘!(𝑛−𝑘)

𝑀

𝑁
(

𝑀

𝑁
−

1

𝑁
) (

𝑀

𝑁
−

2

𝑁
) … (

𝑀

𝑁
−

𝐾−1

𝑁
). .

(−−
𝑀

𝑁
)(1−

𝑀

𝑁
−

1

𝑁
)…(1−

𝑀

𝑁
−

𝑛−𝑘−1

𝑁

(1−
1

𝑁
)(1−

1

𝑁
)…(1−

𝑛−1

𝑁

            (21) 

  

As limit 𝑁 → ∞ and setting 
𝑀

𝑁
= 𝑝, we have  

  Lim 𝑃(𝑋 = 𝑘|𝑀, 𝑛, 𝑁) =
𝑛1

𝑘!(𝑛−𝑘)!
 (1 − 𝑝)(1 − 𝑝)  𝑝. 𝑝 … 𝑝 ….  (1 − 𝑝) 

                             

                                       = (
𝑛
𝑘

) 𝑝𝑘  𝑞𝑛−𝑘                             (22) 

 

3.6 Gamma distribution with chi-square distribution 
 

The Gamma distribution is a scaled Chi-square distribution. Let X be a Gamma distribution random variable 

with parameter 𝑛 and ℎ, then  

 

𝑋 =
ℎ

𝑛
𝑧              (23) 

  

Z has a Chi-square distribution with 𝑛 degree of freedom 

 

Proof: 

  

Let 𝑓𝑥(𝑥) be absolutely continuous variable so that  

 

𝑓𝑥(𝑥) = 𝑓𝑧(𝑔 − 1)(𝑥)
𝑑𝑔−1(𝑥)

𝑑𝑥
 = 𝑓𝑧(

𝑛

ℎ2)
𝑛

ℎ
                (24) 

 

The pdf of a Chi-square random variable with 𝑛 degree of freedom becomes 

 

 𝑓(𝑧) = {
𝑘𝑧

𝑛

2
− 1 

0,
  

exp (−
1

2
𝑥) , 𝑥𝜖{0, ∞}

                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
                         (25) 

 

where 𝑘 =
1

2
𝑛

2⁄ 𝛾(𝑛
2⁄ )

 

Thus,  

 

 𝑓𝑥(𝑥) = 𝑓𝑧 (
𝑛

ℎ
𝑥)

𝑛

ℎ
= {

𝑘(
𝑛

ℎ
)

𝑛
2⁄ 𝑥

1
2⁄ −1

 

0,
  

exp (−
1

2

𝑛

ℎ
𝑥) , 𝑥𝜖{0, ∞}

                   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
           (26) 
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3.7 Gamma distribution relationship with normal distribution 
 

Let a Chi-square random variable 𝑧 with 𝑛 ∈ 𝑁 degree freedom be written as a sum of squares of 𝑛 independent 

normal random variables.  

 

  𝑌1 … 𝑌𝑛 with 𝜇 = 0,      𝜎2 = 1 

 

Thus 𝑧 = 𝑌1
2 + ⋯ + 𝑌𝑛

2               (27) 

 

Let a variable 𝑋 has a Gamma distribution with parameters 𝑛 and ℎ be written as  

 

 𝑋 =
ℎ

𝑛
𝑧                                    (28) 

 

By chaging the algebra,  

 

 ×=
ℎ

𝑛
𝑧 =

ℎ

𝑛
(𝑌1

2 + ⋯ + 𝑌𝑛
2) 

    = (√
ℎ

𝑛
  𝑌1)

2

+ ⋯ + (√
ℎ

𝑛
𝑌𝑛)

2

                          (29) 

= 𝑌1
2 + ⋯ + 𝑌𝑛

2,   where 𝑌𝑖 = √
ℎ

𝑛
𝑊𝑖   𝑖 = 1,2 … 𝑛 ~𝑁(0,

ℎ

𝑛
) 

 

3.8 F Distribution relationship with gamma distribution 
 

Let the pdf of a 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 X be 

 

 𝑓𝑋(𝑥) = ∫ 𝑓𝑋
∞

0
|𝑧 = 𝑧(𝑥)𝑓𝑧(𝑧)𝑑𝑧,                        (30) 

 

where 

 

 𝑓𝑥|𝑧 = 𝑧(𝑥) is the pdf of a Gamma 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 nth parameters 𝑛1 and ℎ1 =
1

𝑥
 

 

 (a) 𝑓𝑥|𝑧 = 𝑧(𝑥) =
(

𝑛1
ℎ1

)
𝑛1
2

2𝑛1Γ(
𝑛1
2

)
 𝑥

𝑛1
2

−1𝑒𝑥 (−
𝑛1

ℎ1

1

2
𝑥) 

                          =
(𝑛1.𝑧)

𝑛1
2

2
𝑛1
2 Γ(

𝑛1
2

)
𝑥

𝑛1
2

−1
exp (−𝑛2

1

2
𝑥)                       (31) 

 

(b)  𝑓𝑧(𝑧) is the pdf of a Gamma random variable with parameters 𝑛2 and ℎ2 = 1 so that  

 

     𝑓𝑧(𝑧) =
(𝑛2)

𝑛2
2

2
𝑛2
2  Γ(

𝑛2
2

)
𝑧

𝑛2
2

−1 exp (−𝑛2
1

2
𝑧)           (32) 

 

This can be established by proving  

 

 𝑓𝑥(𝑥) = ∫ 𝑓 × |𝑧
∞

0
= 𝑧(𝑥)𝑓𝑧(𝑧)𝑑𝑧,                (33) 

 

where  

 𝑓𝑋|𝑧 = 𝑧(𝑥) =
(𝑛1𝑧)

𝑛1
2⁄

2
𝑛1
2 Γ(

𝑛1
2

) 
 𝑥

𝑛2
2

−1 exp (−𝑛1𝑧
1

2
𝑥) 

 𝑓𝑧(𝑧) =
𝑛2

𝑛2
2

2
𝑛2
2 Γ(

𝑛2
2

)
𝑥

𝑛2
2

−1 exp (−𝑛2𝑧
1

2
𝑧) 
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  𝑓𝑥|𝑧 = 𝑧(𝑥)  𝑓𝑧(𝑧) =
(𝑛1𝑧)

𝑛1
2

2
𝑛1
2

Γ(
𝑛1
2

)
𝑥

𝑛1
2

−1 exp (−𝑛1𝑧
1

2
𝑥) 

  =
𝑛2

𝑛2
2

2
𝑛2
2 Γ(

𝑛2
2

)
𝑧

𝑛2
2

−1 exp (−𝑛2
1

2
𝑧) 

 =
𝑛1

𝑛2
2  𝑛2

𝑛2
2

2
(

𝑛1+𝑛2
2 )

Γ(
(𝑛1+𝑛2

2
)

𝑥
𝑛1
2

−1 1

𝑐
𝑓𝑧|× = 𝑥(𝑧)  ,        (34)                                        

where 𝑐 =
(𝑛1+𝑛2)

(
𝑛1+𝑛2

2 )

2
(

𝑛1+𝑛2
2 )

Γ(
(𝑛1+𝑛2

2
)

            

 

  𝑓𝑧|× = 𝑥(𝑧)   is the pdf of a random variable having a Gamma distribution with parameters  

 

 ℎ1 + 𝑛2 and 
𝑛1+𝑛2

𝑛1𝑥+𝑛2
  

Thus, ∫ 𝑓 × |𝑧
∞

0
= (𝑥)𝑓𝑧(𝑧)𝑑𝑧 

 =∫
𝑛1

𝑛1
2   𝑛2

𝑛2
2

2(
𝑛1+𝑛2

2
)Γ(

𝑛1
2

)Γ(
𝑛1
2

)

∞

0
𝑥

𝑛1
2

−1 1

𝑐
𝑓𝑧|𝑋 = 𝑥(𝑧)𝑑𝑧 

 =
𝑛1

𝑛1
2   𝑛2

𝑛2
2

2
(

𝑛1+𝑛2
2 )

Γ(
𝑛1
2

)Γ(
𝑛2
2

)

𝑥
𝑛1
2

−1 1

𝑐
∫ 𝑓

∞

0
𝑧|𝑋 = 𝑥(𝑧)𝑑𝑧 

  =
𝑛1

𝑛1
2   𝑛2

𝑛2
2

2
(

𝑛1+𝑛2
2 )

Γ(
𝑛1
2

)Γ(
𝑛2
2

)

𝑥
𝑛1
2

−1 1

𝑐
 

 = (
Γ(

𝑛1
2

)Γ(
𝑛2
2

)

Γ(
(𝑛1+𝑛2)

2
 )

)

−1

(
𝑛1

𝑛2
)

𝑛1
2

𝑥
𝑛1
2

−1 (1 +
𝑛1

𝑛2
𝑥)

−(
𝑛1+𝑛2

2
)

 

  =
1

𝐵(
𝑛1
2

,
𝑛2
2

)
 (

𝑛1

𝑛2
)

𝑛1
2

𝑥
𝑛1
2

−1 (1 +
𝑛1

𝑛2
𝑥)

−
(𝑛1+𝑛2)

2
 

= 𝑓𝑋(𝑥)                      (35) 

 

 
 

Fig. 3. Schematic Relationships of Commonly used Univariate Distributions 
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Table 1. List of Some Selected Continuous Probability Distributions, Domains and Properties 

 

Probability 

distribution 

Probability density 

function 𝒇(𝒎) 

Domain Parameters Mean Variance 

Beta 

 

𝑓(𝑚) =
Γ(𝑛+𝜆)

Γ(𝑛)Γ(𝜆)
𝑚𝑛−1(1 −

𝑚)𝜆−1  

0 < 𝑚
< 1 

2 shape 

𝑛 > 0  

𝜆 > 0  

𝑛

𝑛+𝜆
  

𝑛𝜆

(𝑛+𝜆)2(𝑛+𝜆+1)
  

Uniform 𝑓(𝑚) =
1

𝑏−𝑎
  𝑎 < 𝑚 <

𝑏  

−∞ < 𝑎 <
𝑏 < ∞  

(𝑎+𝑏)

2
  (𝑏 − 𝑎)2

12
 

 

Gamma 𝑓(𝑚) =
𝜆𝑛𝑚𝑛−1𝑒𝑥𝑝−𝑚𝜆

Γ(𝑛)
  

𝑚 > 0   

 

1 scale 

1 shape 

𝑛, 𝜆 > 0  

𝑛

𝜆
  

𝑛

𝜆2  

Exponential 𝑓(𝑚) = 𝜆𝑒𝑥𝑝−𝑚𝜆  𝑚 > 0  

  

1 scale 

𝜆 > 0  

1

𝜆
  

1

𝜆2  

Erlang 𝑓(𝑚) =
𝜆𝑛𝑚𝑛−1𝑒𝑥𝑝−𝑚𝜆

(𝑛−1)!
  

𝑚 > 0  

 

1 shape 

1 rate 

𝑛, 𝜆 > 0  

(𝑛 ∈ Ν)  

1

𝜆
  

1

𝜆2  

Chi-Squared 
𝑓(𝑚) =

𝜆
𝑛
2 𝑚

𝑛
2−1

𝑒𝑥𝑝
−𝑚

2

Γ(
𝑛

2
)

  
𝑚 > 0  

 

𝑛 > 0  

(𝑛 ∈ Ν)  

 

𝑛  2𝑛  

 

 

 

 

4. Conclusion 
 

Identification of the characteristics that describe random variables of interest helps to find the right probability 

distributions for our study. These distributions and their links as highlighted in the review are handy for 

successful modelling, predictions and general assignment of probability distributions to random variables. 

Binomial, Hypergeometric, Negative Binomial and Poisson discrete distributions and exponential, Gamma, Chi-

square, F continuous distributions are discussed and relationships between them have been established.  
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