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Abstract

In this work, we investigate the finite dimensionality of an attractor of a two-temperature Caginalp-
type system for heat conduction. In order to prove that the global attractor is of finite dimension, we can
use the volume contraction method, show the existence of an inertial manifold or an exponential attractor. The
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volume contraction method is not applicable because it requires a certain differentiability of the associated
semigroup, which is not possible to obtain for our system. Similarly, the construction of an inertial manifold
relies on the so-called spectral gap condition, which is a very restrictive condition. For all these reasons, we
show that the global attractor of the system is of finite fractal dimension by proving that the system has an
exponential attractor.

Keywords: Transition model; two temperatures; global attractor; exponential attractor; Hausdorff’s dimension;
fractal dimension.
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1 Introduction

The asymptotic behaviour of dynamical systems is an important aspect of their study. This is why researchers
often seek to demonstrate the existence of an attractor. An attractor is a compact region in the space of
physical variables that attracts all or some of the system’s trajectories. Determining its dimension is a key step

in describing it. Since the attractor is a fractal object, its dimension is not integer.

Consider the Caginalp field-phase system defined by :

%—Au—kf(u):(p—A(p in Q, (1.1)
%) Op _  Ou.

5 A 5t Ap = 5 b Q, (1.2)
u = =0 on 09, (1.3)
U|t=0 = Uuo, <P|t=0 = Yo in Q. (1.4)

The derivation of this system, the well-posdness of the problem and the asympotic behaviour have been done
in [1]. In particular, we have shown the existence of a global attractor. Beyond the existence of the attractor,
it is often interesting to estimate its dimension. Indeed, the dimension of a global attractor is an interesting
geometrical property insofar as it gives information on the number of degrees of freedom defining the considered
dynamic system (see [2], [3], [4], [5], [6]). The dimension of an attractor is understood to be an overlapping
dimension such as the Hausdorff dimension or the fractal dimension (see [7], [8], [9], [10]). There are many
techniques for estimating the dimension of a global attractor (see [11], [12], [13], [14]). One of them is to show
the existence of an exponential attractor. Indeed, the existence of an exponential attractor implies not only the
existence of a global attractor but also that the latter is of finite dimension (see [15], [4], [16], [17], [18], [19]).

In the first section of this work, we recall the existence result of the global attractor obtained in [1]. Finally,

in the last section, we establish the existence of an exponential attractor, which allows us to conclude that the
global attractor is of finite fractal dimension.

The letter ¢, or ¢/, denotes a constant which may change from one line to another. Similarly, ||.||, will denote

the L” norm and (.,.) the usual scalar product L?. We will denote by ||.|x the norm in the Banach space X.
Finally, when there is no possible confusion, we will note ||.|| instead of ||.||2.

2 Preliminaries

In this section, we recall a certain number of assumptions and results obtained in [1]. They are an essential
prerequisite for the rest of our work. These assumptions are as follows

—co < F(s) < f(s)s+c1, co,c1>0,s€R, and F(s) = /Sf(r)dT, (2.1)
0
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IF' () <ea(ls” +1), c2,p>1, s€ER, (2.2)
f'>—c3, ¢3>0, (2.3)
£(0) = 0. (2.4)

Thanks to these, we have obtained the following results :

Theorem 2.1. Let T > 0 be given. We assume that uo € Hj(Q), wo € H*(Q) N Hy(Q) and F(ug) < +oo.
Then, under assumptions (2.1)-(2.2), the problem (1.1)-(1.4) admits at least one solution denoted (u,p) such as

we L®(Ry; HY(Q)), p € L™ (Ry; H(Q) N HY(Q), 2 € L*((0,T) x Q) and %2 € L*(0,T; HY(Q).

Theorem 2.2. We then have under conditions of Theorem 2.1 that the problem (1.1)-(1.4) possesses a unique
solution (u, p) with the above regularity.

Remark 2.3. A consequence of the theorems 2.1 and 2.2 is that we can define a family of resolution operators
S(t):® — @

(o0, 90) —> (u(t), (1)), ¢ >0, 25)

where ® = Hg(Q) x H*(Q) N H5(Q) and (u, o) is the unique solution to the problem (1.1)-(1.4). Besides, this
family of solving operators forms a contnuous semigroup i.e. S(0) = Id and S(t + 7) = S(¢t) o S(1), V¢, 7 > 0.

Theorem 2.4. Under the assumptions of Theorems 2.1 and 2.2, the semigroup S(t) is dissipative on ®. In
other words, the semigroup S(t) has a bounded absorbing set B in ®.

Taking into account all the above, we can now state the existence theorem of the global attractor

Theorem 2.5. Under conditions of theorem 2.2 and taking into account (2.2)-(2.4). Then the semigroup S(t)
defined onto Hy(Q) x H?(Q) possesses the global attractor denoted A which is bounded in H*(Q) x H?().

Proof. For the proof of the theorems 2.1, 2.2, 2.4 and 2.5 see [1]. O

To have proved the existence of a global attractor is certainly interesting but it would be even better to be able
to estimate its dimension. For that we will demonstrate the existence of an exponential attractor.

3 Estimation of the Global Attractor Dimension

The notion of exponential attractor was introduced by Eden et al (see [20]) with the aim of correcting certain
defects of the global attractor, in particular its speed of attraction and its robustness. In practice, to evaluate the
dimension of the global attractor, we use the volume contraction method. This consists of studying the evolution
of infinitesimal volumes of dimension k in a neighbourhood of the global attractor: if the semigroup contracts
volumes of dimension k, therefore its fractal dimension is less than k. This method generally gives the best
estimates of dimension in terms of physical parameters (see [21]). Nevertheless, the volume contraction method
requires a certain degree of differentiability in the associated semigroup, which is difficult, if not impossible, to
achieve. The finite dimensionality of the global attractor can also be obtained by exibiting an inertial manifold
or an exponential attractor. The inertial manifold is a smooth (at least Lipschitz) finite-dimensional manifold
satisfying an asymptotic completeness property. However, all known constructions of inertial manifold are
based on a very restrictive condition known as the spectral gap (see, for example, [22], [19]). The existence of
exponential attractor requires weaker assumptions, namely some Lipschitz or Hélder property, which can be more
easy to get. Historically, the construction of the exponential attractor was founded on the squeezying property,
which basically says that either the higher modes are dominated by the lower modes, or the flow is exponentially
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contracted. It is non-constructible in the sense of Zorn’s lemma and is only valid in Hilbert spaces, since it makes
essential use of orthogonal projectors of finite rank. Another construction of an exponential attractor valid in
Banach spaces has been proposed in [23], [24]. It consists in establishing a regularity property on the difference
of two solutions which generalises the techniques proposed in [25]. In our case, in the absence of regularisation
effects on the initial data linked to the highly damped term —A%—f , the methods mentioned above no longer
work. For this reason, we will use a decomposition argument (see [11], [23], [26], [27], [28], [13]).

Definition 3.1. A compact set M is an exponential attractor for the semi-group S(¢) if :
1) It is of finite fractal dimension, i.e. dim(M) < +oo,
2) It is positively invariant, i.e. S(£)M C M, t > 0,

3) It exponentially attracts bounded subsets of the phase space ® in the following sense: VB C ®, bounded
disty(S(t)B, M) < Q(||Bll¢)e” ", ¢ > 0 constant and  monotone function independent of B, dist, is
the Hausdorff semi-distance between the sets.

We start with stating result that will be useful in the sequel (see [8], [20], [18]).
Theorem 3.1. Let V and H be two Banach spaces such that S(t) : X — X is a semigroup acting on a closed

subset X of H. We assume :
a) S(t)yu—S(t)v = ¢*(t)+¢*(t), Yu, v € X, where ||¢*(t)||% < d(t)|lu—v||%, d continuous function, d(t) — 0

quand t — +oo and ||¢*(t)||% < h(@®)|lu —v||%H, h continuous function,
b) the application (t,x) — S(t)z is lipschitz in space and Holder in time on [0,T] x B, T > 0,VB C X,
bounded.

Then S(t) has an exponential attractor M on X.

To prove the existence of exponential attractors in our case, we will rely on theorem 3.1. We have the following
result

Theorem 3.2. The semigroup S(t), t > 0, corresponding to the problem (1.1)-(1.4) defined from X to itself
satisfies a decomposition as in theorem 3.1, provided that p < 1 when Q C R3.

Proof. Let X = U;>¢, B, B being the bounded absorbing set. We have X C ®. We restrict S(¢) : X — X. Let
(u1,¢1) and (u2,@2) be two trajectories of the problem (1.1)-(1.3) with initial data (uo1,®o01) and (uo2, po2).
We pose u = u1 — uz2, ¢ = @1 — P2, Up = Uo1 — Uo2, Po = Po1 — woz- Thus (u,p) verifies :

ou

¢~ Aut flur) = flu2) = ¢ = Ap, (3.1)
A Op _ Ou

at o YT T (3.2)
u=¢ =0 on 01, (3:3)
U|t:0 = Uo, @\t:o = 0. 34

Subsequently, we decompose (u, ) as follows (u, ) = (v,{) + (w, p) where (v, () is a solution of :

ov

o; ~Av=C-AC (3-5)
OC N0 A, OV

ot o AT T (3.6)
v=_=0on 09, (3.7)
V|t=0 = o, C|i=0 = @o. 3.8
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and (w, p) satisfies :

0

Sp — Aw f(w) = fu2) = p— Ap,
ap ap __Ow

o P AT e

w=p =0 on 09,
w(0) = p(0) = 0.

[oX)

Multiply (3.5) and (3.6) by %7

(3.9)

(3.10)

(3.11)
(3.12)

and (¢ — A() respectively. Then by summing them and integrating over 2, we

obtain
d 2 2 2 2 ov o 2 2
2 IOl + 0K + 20V + IACF) +2  l157 17 + IV + [AC) ) =o. (3.13)
Now, multiplying (3.5) by v, then integrating through Q
5%”1]" + 2|Vu|” = Q(C—AC)vdaz. (3.14)
From (3.14), we get the inequality
d o 2 2
I+ IVol” < el Vel (3.15)

Multiply (3.15) by € with € > 0 small enough, then summing with (3.13), we arrive at the inequality

Ov
= vl + 170l + IS + 29 ¢I” + IACI) + el Vol® + 219 ¢I1” + A1) + 2H§H2 < IVel®. (3.16)
Let’s put
B =e|ol® +[|Voll* + ICII* + 2[ V¢II* + 1 AC]. (3.17)
By choosing € such that 2 — ec > 0, we obtain
dE v
S eVl + (2 - ol VCI + 2 + 2| S <o. (3.18)
Now, using Poincaré’s inequality, we have
B =e|ol® +IVoll* + [ICI* + 2 VCI* + 1A < e (IVol® + [IV¢I* + 1ACH?) - (3.19)
From (3.18)-(3.19), the following inequation can be derived
dFE ov 2
— +cE+2[| | <0 2
dt+c + HatH <0 (3.20)
And so in particular
dE
— <0. .
T +cE <0 (3.21)
Multiplying (3.21) by e, we obtain
B et | cpeet <0. (3.22)
dt
Let
E(t)+ < E(0)e™*" (3.23)
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However, we have

c(lo@® 7 + 1¢ON72) < B@) < ex(lo@)lfzn + 160 17)- (3.24)

Hence, using (3.23), we have

[v(®) 13+ 11<O 172 < d(t)(luollF + llpoll2), (3:25)
with d(t) = e~

In the same way, Multiplying (3.9) and (3.10) by %—j’ and (p — Ap) respectively, then summing and integrating
through 0, we get

1d
327 (Iwl” +lel* + 119 ol” + 1 Ap]* )+H || +HIVoll* + 1 Ap]* = /(f u1) ))Edw (3.26)

However, we have

[ ) = s G dol < [ 16 w)ls — w5 da (321)
Using (2.2) in (3.27), we get
| () = ) G dal < c [ (Gusf + fusl®” + Dl 57 da. (3:29)

The Holder inequality is then used to establish that (i = 1,2, p = 1)

1 1 1
/|Uz 2p|uH |d$< (/ |UL 6pda:)3 </ |u|6dw>6 (/ |87w|2dx)2

ow 3.29
< luill o lull ol 5 Nl 2 (3:29)
1, 0w
< luill 3 lullzn + 5 LTS [l
Taking into account (3.28)-(3.29), the equality (3.26) becomes
24 (llwl® + llll* + 1V pll* + |1 Apll )+ 122 || +IVoll* + | Aplf?
2 dt (3.30)
< cllunllfn + lluzllfn + Dl ¢ = 1.
This time, multiplying (3.9) by w and integrating over Q, we get
sl + 18wl + [ (Fw) = fuwde = [ (o= Appwd. (3.31)
Q
By similarity of the calculations made in (3.27)-(3.29), we obtain
|| (flua) = fluz)wdz] < c([lullfn + uallfn + Dllullgr, ¢ > 1. (3.32)
Q
Also, using the Schwarz and Poincaré formulas
1
/(p — Ap)wdz = / pw dz +/ VoVwdz < | Vol + 5| Vul?. (3.33)
Q Q Q

Using (3.32)-(3.33) in (3.31), we get
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3 dtll wl* + [Awl® < ellurllfs + luzllfy + Dlullz + e Vol (3.34)

Also, multiplying (3.9) by —Aw and integrating over 2, we have

29wl + aw]? / (flur) — fuz)Awda = — / (p— Ap)Awde. (3.35)

By similarity of the calculations made in (3.27)-(3.29), we obtain
1
\/(f(M) = f(u2))Awda| < c(uallfn + fuallfs + Dlulln + 7 1Aw]?, (3.36)
Q

1
| (0= Apywdal < (19 +1401) + A (3:37)

Taking into account (3.36)-(3.37) in (3.35), we obtain

3 dtHV wl* + [Awl® < c(llurllfs + luzllfy + Dlullzn +e(IVoll* + [1201%). (3.38)

Also, multiplying (3.9) by A%f and integrating over (), we have

gl dul IV = [ (fw) = fuaflao = = [ (- apafias. (3.39)

However, we have

Ow ow ow
f/ﬂ(ppr)Ade—f/QpAdeJr/QApAde. (3.40)

In addition

0
- [t~ runads = [ Vi) - f) v d
Q t
o (3.41)
= [ )V = ) Vur) 9 52
Q t
However, we have
f(u)Vuy = f(u2)Vue = (f'(ur) — f'(u2))Vur + f' (u2) V. (3.42)
Taking into account (3.42), (3.1) then becomes
0
[ ) = pua) AT del < e [ (i + uaf + Dlul V]9 5 (3.43)
Since H?(R) is continuous embeddings into L>°(Q) (2 bounded set), (3.43) gives
ow
|/Q(f(u1) - Uz))AfT dz| < e(|lurllr2 + luzllrz + 1)llull g lus ]| 2] + HV ||| (3.44)
Now, by multiplying (3.10) by AZ%p and integrating through Q, we get
A A = A 4
Zdt/\ |d+2dt/|vp|dx+/\vp|dx /v VApda. (3.45)

Hence
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1d
2 Uapl + 1V 80) + 19 2] / v2Uapda.
Similarly, by multiplying (3.10) by A%lt“ and then integrating through Q, we obtain
ow ow
Aw - A— = — Ap)A— dx.
sl dul IV = [ (fw) = fafy = [ (- anaflas

By summing (3.46) and (3.47), we obtaln

d
S (1awl® + 120" + [VAp]*) + HV H +[IVAp|?

- [ ) = ranaZy == [ - Ap)A%—t o+ [ VRN

N =

Now,

[ = rnafi == [(o-apaflar+ [ vEvApde

w

In the same way, multiplying (3.9) by 687 and integrating over 2, we obtain

ow ow
SVl 415+ [ ()~ s S do = [ (o apaG de

Multiplying (3.10) by p — Ap and integrating over €, we get

2 dt
Now, adding (3.50) and (3.51), we obtain

1d
2 (17wl + ol + 217l + |80]?)

ow
+|| H +IVoll® + 112p)* = Q(f(ﬂl)—f(uz))ad%

However, we have, owing to (2.2)

[ (rtwn) = fa) G dol < [ 1 Gur,wa))l s = sl |G | o
< [ Qual + fual” + Dlul 5 | o

ow
S0P + 21901 + 18I + V7 + 1801 = = [ (0= 2p) G o

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

If © C R®, we have using, Holder’s, Young’s inequalities, sobolev embedding and noticing that p < 1, in that

case (we will take p = 1)

1 1 1
ow 3 6 ow 2
|12p < |6p 6 2 P
/Q|uz| [u| |—at |dx < (/Q Jusl d:r) (/Q |u| dx) (/Q |—8t | da:) ,1=1,2

ow
< ||uiH2L%p(Q)HUHLG(Q)HEH

ow
< C”uiHiIl(Q)”uHHl(Q)HE‘L (HI(Q) C LG(Q))

1,0w
< C||uz||H1(Q)||U||H1(Q) + 6|| o 12

(3.54)
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Considering (3.53) and (3.54), the equality (3.52) becomes

1 9 2 1, 0w, o
l _A [t
> SVl + llo— 86lP) + 5152

4 4
< ellurllzr o) + Izl @) + Dllullz o)-

|

+IVol* + [ Aplf?

QU

Multiplying (3.9) by w and by integrate over 2

1d

Using Poincaré’s, Cauchy-Schwartz’s and Young’s inequalities, we have

|/ pw dal s/ 1ol 0] e
Q Q

<c [ 19pVuldo
Q
1
< dl|Vol* + glIvel®
and
\/Vprd:d S/ [Vpl|lVw| dx
Q Q
, 1
< d|IVol* + glIvel*.

Collecting (3.56)-(3.58), we get

1d

garlol? + 31Vl + [ (Fw) = fua)yw da < 9l

Now, If Q C R3, we take p =1 (actually, p < 1, in that case), Holder’s inequality yields

- / (Flur) — f(us))wda] < / ) — f(ua)] o] de
< / 1/ (0Cus, uz))] [us — s o] da

<e / (| + fual + 1) u] o] de
Q

< e(llurllr o) + lluzllzr @) + Dllul o) lw].

Applying Poincaré’s and Young’s inequalities, we write

| Q(f(ul) = flu2))wdz| < c(lurll () + lluzlli @) + Dllull o) 1wl

2 2
< c(lluallzr @) + lluzllz @) + Dllull g @ IVl

4 4 2 1 2
< clllualla @) + lluzllm @) + Diiwlla @) + g IVwll™

Taking into account (3.61), estimate (3.59) becomes

sl + 19wl + [ () = fuywda = [ pwdo+ [ Vo9wda.

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

(3.60)

(3.61)
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1d
2dt
Adding (3.55) and €1(3.62), where €; > 0 is small enough, we obtain

2 1 2 4 4 2 2
lwl® + S1Vell” < elllullan @) + lluellz @ + Dllullz @ + < IVaIl

dF1 ow /
o T IVl + 1ap)1%) + [ Vwl|* + HAEH2 < (Jurllz gy + luzlli @) + Dllullz @),

where E1 = e1]|w||®> + ||[Vw|* + ||p — Ap||?, satisfies

C(HwHiIl(Q) + ||P||§{2(n)) <Ei < CI(HWH?{l(Q) + ||P||§{2(Q))-
Thus, (3.63) becomes

dE1 aw
& T cEr + HEHQ < C,(Huluzl(n) + HU2H§11(Q) + 1)”’“”%11(9)»

Now, multiplying (3.9) by —Aw and integrating over €2, one has

1d

29 | + aw? :/(f(ul)—f(uQ))Awdx/ Vprdx—!—/ ApAw da.
t Q Q Q

Thanks to (2.2), we have

| / (F(ur) — f(u)) Awda] < / (Jua 22 + ua]?? + 1) [u] | Aww] d.
Q Q

If Q C R3, p <1 in that case, we take p = 1 and then have thanks to Holder’s and Young’s inequalities

2 2 2 2
/(IMI Pt fue™ 4+ Dful [Aw| de < c([Jur][q) + vzl @) + Dllullm @ | Awll
Q

4 4 2 1 2
< elllurllr @) + lluzllz @) + Dllulla @) + 7 1Aw]™

Finally, we are led to an inequality of the type

1
2dt
) and ez (3.69), with €2 > 0 is small enough. We find
dE,

ow 4
L2 4 e+ 8wl + |G < € (lutllrs @ + el @ + Dllels @)-

where F» = E1 + e2||Vw||? satisfies an estimates similar to (3.64).

Multiplying (3.9) by —A%—“t’ and integrating over €2, we get

ow

1d, A ow 2_/ _ / w / ow
3 a8 VG = [ () = fu)AGEdet | VpV5tdet | ApATE dr.

IVl + [[Awlf* < e(llurll @) + luzll @) + Dllulin o) + < (VoI + 180]%).

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)
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Multiplying (3.10) by AZp and integrating over €2, we obtain

1d
518017 + V2% + V801 = = [ Apa T . (3.72)

Adding (3.71) and (3.72), we find

1
§a(||Aw||2+HAPH2+HVAPH )+ IVAp|? +HV ||
ow (3.73)
= [ - s@)allact [ 9oL an
Q
However,
ow
(f(u1) = f(u2))A V flur) ))V8 dx
Q t
o (3.74)
- /(f (ul)VU1 _f (W)Vuz)va— dx
Q t
Furthermore,
f(u)Vur = f'(u2)Vuz = (f'(u1) = f'(u2))Vur + f'(u2)Vu (3.75)
and therefore
ow ,
[ () = ) AT dol < [ 1 () = £ 2)| V0] [V G | o
Q (3.76)
/|f ua)| [Vl [V 0 da.
We then deduce, thanks to (2.2), Holder’s and Young’s inequalities that
18 ) = £ )| 9] [9 G | o
/|f (w1, w2))| s — 2 [V |92
(3.77)
< e gy + 102122 ) + 1) /IuHVmIIV | da
c[lur 2y + luzlltz @) + Dllullf @ lullfze) + = ||V H
Analogously, we have
/|f ua)| 1Vl [V 2 d
< /(|u2|2”+1) IVl \vaifmm
(3.78)

ow
< cllualFe )+ 1) [ 19011V 57 da

< C(HUlH}lﬂ(Q) + ||u2||‘,1,2(9) + 1)||UH§{1(Q) + = HV ||
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and

|/Wva44wM|<y/|VpHv | de|
< IVolIv ) (3.79)
< Vol + SV 2P

Collecting estimates (3.73)-(3.79), we finally get an inequality of the form

1d 2y
——([[Aw]|®> + [|Ap]? + IVAp|?) + [VAp|* + 7|V |
5 77 (18wl + 112" + | )+ | | * (3.80)
2
> C(HU1||H1(Q) + Hu2HH1(Q) + 1)HUHH1(Q) +c HVPH s 5 > 0.
The addition of (3.70) and €3(3.80), for e3 > 0 small enough, gives
s | o v < g v 1)||ul? >0 (3.81)
W ey + 12207 4 IV 222 < & (e + 02 ey + Dl v 2 0. .
where FE3 = E2 + e3(]|Aw|)® + || Ap||* + HVApH2) satisfies
cllwllfrz) + lolis @) < Bs < ¢ ([wllf@) + 1ol @)- (3.82)
We deduce, thanks to Gronwall’s lemma and (3.82), that
w72y + 1) zs @) < RO (luoll ) + lvollzz @), Yt € 0,7, (3.83)
t
where h(t) = CI/ 7 (w2 gy + 2l g + 1) ds. O
0

Theorem 3.3. The semi-group S(t), t > 0, generated by the problem (3.9)-(3.12) is a Lipschitz in space and
Holder in time on [0,T] x B
where B C H?(Q) x H*(Q) is a bounded.

Proof. The Lipschitz continuity in space being a consequence of the result on the uniqueness of solutions obtained
in [], it just remains to prove a holder condition in time for the semigroup S(¢), t > 0. Let initial data belong to
B, i.e. let R > 0 be fixed, such that HUOHZI(Q) + ”900”?-12(9) < R. Thus, for all ¢; > 0 and ¢z > 0, two different

times, thanks to estimates on H%qul(s)) and “%ﬁ”iﬂ(ﬂ) and Cauchy-Schwarzt’s inequality, we have

[15(t1) (o, o) — S(t2)(uo, <P0)|\H1(Q)xH2(Q) = Jlu(tr) — u(tz), p(t1) — So(t2)||H1(Q)xH2(Q>
= [lu(ts) — u(t2) ||z () + le(tr) — o(t2)l| a2
ou(r a 3.84
< [0 P sy ar+ [N i O
t1
1
<clty —t2]2,
where ¢ depends on T' > 0 and R.
O
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We deduce from theorem 3.2 and theorem 3.3, the following result

Theorem 3.4. The dynamical system (S(t),X)t > 0, associated to the problem (3.9)-(3.12) possesses an
exponential attractor noted M in X.

Remark 3.5. Compared with the global attractor, an exponential attractor is expected to be more robust under
perturbations. Indeed, the rate of attraction of trajectories towards the global attractor can be slow and it is
extremely difficult, even impossible, to estimate this rate of attraction according to the physical parameters of
the problem in general. As a result of global attractor may change drastically under small perturbations.

Corollary 3.6. The semigroup S(t)t > 0, possesses the finite-dimension global attractor A in X.

Remark 3.7. The finite-dimensionality means, basically, that, although the initial phase space is infinite-
dimensional, the reduced dynamics is, in an appropriate sense, finite-dimensional and can be described by a
finite number of parameter.

4 Conclusion

In this work, we demonstrated that the attractor of the dynamical system we studied is of finite dimension by
showing that the dynamical system has an exponential attractor. For the future, it would be interesting to
determine precisely the value of the dimension of the attractor. There are many techniques for determining the
dimension of an attractor. These include methods derived from the statistical theory of extreme values, whose
estimates of the local fractal dimension are becoming increasingly reliable.
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